Program Motions Stabilization of Variable Structure Systems

Authors

DOI:

https://doi.org/10.17072/1993-0550-2023-2-16-28

Keywords:

variable structure systems, stabilization, stability of control

Abstract

The program motions orbital stabilization problem is considered for systems with piecewise constant controls. The problem is reduced to the elucidation of the linear difference equations special system asymptotic stability. The considered systems class, called variable-structure systems, is included in the so-called transforming systems class, which are currently growing interest in the present time. An orbital stability criterion and a desired stabilizing control synthesizing method for the structurally linear systems in the case of auto-oscillation constructions are proposed.

References

Емельянов С.В. Системы автоматического управления с переменной структурой. М.: Наука, 1967.

Емельянов С.В. Системы переменной структуры – ключ к открытию новых типов обратной связи // Нелинейная динамика и управление. М.: Физматлит, 2013. № 8. С. 5–24.

Емельянов С.В., Уткин В.И. Применение систем автоматического регулирования с переменной структурой для управления объектами, параметры которых изменяются в широких пределах // Кибернетика и Теория Регулирования. Докл. АН СССР. 1963. Т. 152, № 2. С. 299–301.

Уткин В.И. Системы с переменной структурой, состояние проблемы, перспективы // Автоматика и Телемеханика. 1983. 9. С. 5–25.

Емельянов С.В., Таран В.А. К вопросу использования инерционных звеньев для построения одного класса систем автоматического регулирования с переменной структурой. I // Автоматика и Телемеханика. 1963. Т. 24, вып. 1. С. 33–46.

Смирнов Е.Я. О стабилизации программных движений систем переменной структуры // Вестник ЛГУ. Сер. математика, механика, астрономия. 1990. Вып. 1. С. 40–43.

Иванов Г.Г., Алфёров Г.В., Королёв В.С. Системы с транзисторными ключами // Вестник Пермского университета. Математика. Механика. Информатика. 2020. Вып. 2(49). С. 14–18.

Alferov G., Ivanov G., Efimova P., Sharlay A. Study on the structure of limit invariant sets of stationary control systems with nonlinearity of hysteresis type (2017) AIP Conference Proceedings. 1863. P. 080003. DOI: 10.1063/1.4992264.

Alferov G.V., Ivanov G.G., Efimova P.A. The structural study of limited invariant sets of relay stabilized system (Book Chapter) (2017) Mechanical Systems: Research, Applications and Technology. P. 101–164

Kadry S., Alferov G., Ivanov G., Korolev V., Selitskaya E. A new method to study the periodic solutions of the ordinary differential equations using functional analysis. (2019) Mathematics, 7(8). 677.

Kadry S., Alferov G., Ivanov G., Korolev V. Study of Control Systems with Transistor Keys. // (2022) AIP Conference Proceedings. 2425. 080003.

Kadry S., Alferov G., Korolev V., Shymanchuk D. Mathematical Models of Control Processes and Stability in Problems of Mechanics // (2022) AIP Conference Proceedings. 2425, 080004.

Kadry S., Alferov G., Ivanov G., Korolev V. Investigation of the stability of solutions of systems of ordinary differential equations // (2020) AIP Conference Proceedings. 2293, 060004.

Kadry S., Alferov G., Ivanov G., Korolev V. About of the asymptotical stability of solutions of systems of ordinary differential equations // (2020) AIP Conference Proceedings. 2293, 060005.

Kadry S., Alferov G., Ivanov G., Korolev V. On estimation for numbersof periodic and almost periodic solutions of first-order ordinary differential equations // (2020) AIP Conference Procedings. 2293, 060003.

Alferov G., Ivanov G.,Sharlay A., Fedorov V. Estimation for number of almost periodic solutions of first-order ordinary differential equations // (2019) AIP Conference Procedings. 2116, 080004.

Kadry S., Alferov G., Kondratyuk A., Kurochkin V., Zhao S. Modeling the motion of a space manipulation robot using position control // AIP Conference Procedings. 2116, 080005.

Kulakov F., Kadry S., Alferov G., Efimova P. Remote control of space robots changeadaptive in its external environment // International journal of online and biomedical engineerings. 2019. 15(7). S. 84–98.

Published

2023-06-30

How to Cite

Ivanov Г. Г., Alferov Г. В., & Korolev В. С. (2023). Program Motions Stabilization of Variable Structure Systems. BULLETIN OF PERM UNIVERSITY. MATHEMATICS. MECHANICS. COMPUTER SCIENCE, (2 (61), 16–28. https://doi.org/10.17072/1993-0550-2023-2-16-28

Most read articles by the same author(s)