Теорема об области асимптотической устойчивости и её приложения

Авторы

DOI:

https://doi.org/10.17072/1993-0550-2022-1-5-13

Ключевые слова:

дифференциальные уравнения, периодические решения, функции Ляпунова, асимптотическая устойчивость

Аннотация

В статье предлагается обобщение теоремы об области асимптотической устойчивости решений обыкновенных дифференциальных уравнений на случай системы уравнений, где правая часть явно зависит от времени. Показывается, как можно использовать теорему для ответа на вопрос о существовании для рассматриваемого уравнения периодических решений отличных от тривиального, и как с использованием построенных функций Ляпунова можно находить эти периодические решения.

Библиографические ссылки

Демидович Б.П. Лекции по математической теории устойчивости. М.: Наука, 1967.

Зубов В.И. Устойчивость движения. (Методы Ляпунова и их применение). М.: Высшая школа, 1973.

Зубов В.И. Лекции по теории управления. М.: Наука, 1975.

Малкин И.Г. Теория устойчивости движения. М.: Наука, 1966.

Плисс В.А. Нелокальные проблемы теории колебаний. М.–Л.: Наука, 1964.

Ляпунов А.М. Общая задача устойчивости. М.: Наука, 1969.

Иванов, Г. Г.; Алфёров, Г. В.; Ефимова, П. А. Устойчивость селекторно-линейных дифференциальных включений. // Вестник Пермского университета. Математика. Механика. Информатика. 2017. Вып. 2(37). С. 25–30.

Alferov G., Ivanov G., Efimova P., Sharlay A. Study on the structure of limit invariant sets of stationary control systems with nonlinearity of hysteresis type (2017) AIP Conference Proceedings. 1863, P. 080003. DOI: 10.1063/1.4992264.

Alferov G.V., Ivanov G.G., Efimova P.A. The structural study of limited invariant sets of relay stabilized system (Book Chapter) (2017) Mechanical Systems: Research, Applications and Technology. P. 101–164.

Alferov G.V., Ivanov G.G., Efimova P.A., Sharlay A.S. Stability of linear systems with multitask right-hand member (Book Chapter) (2018) Stochastic Methods for Estimation and Problem Solving in Engineering. P. 74–112. DOI:10.4018/978-1-5225-5045-7.ch004.

Ivanov G., Alferov G., Sharlay A., Efimova P. Conditions of Asymptotic Stability for Linear Homogeneous Switched System, in International Conference on Numerical Analysis and Applied Mathematics, 2017, AIP Conference Proceedings, Vol. 1863. P. 080002. DOI:10.1063/1.4992263.

Kadry S., Alferov G., Ivanov G., Sharlay A. About stability of selector linear differential inclusions (2018) AIP Conference Proceedings, 2040. P. 150013. DOI: 10.1063/1.5079216.

Kadry S., Alferov G., Ivanov G., Sharlay A. Almost Periodic Solutions of First-Order Ordinary Differential Equations, Mathematics. 2018. Vol. 6, № 9. P. 171. DOI: 10.3390/math 6090171.

Kadry S., Alferov G., Ivanov G., Sharlay A. Stabilization of the program motion of control object with elastically connected elements. (2018) AIP Conference Proceedings, 2040. P. 150014. DOI: 10.1063/1.5079217.

Kadry S., Alferov G., Ivanov G., Korolev V., Selitskaya E. A new method to study the periodic solutions of the ordinary differential equations using functional analysis. (2019) Mathematics, 7(8). 677.

Korolev V. Properties of solutions of nonlinear equations of mechanics control systems, in 2017 Constructive Nonsmooth Analysis and Related Topics (Dedicated to the Memory of V.F. Demyanov), CNSA 2017. IEEE Conference Proceedings. P. 7973973

Ivanov G., Alferov G., Efimova P. Integrability of nonsmooth one-variable functions // 2017 Constructive Nonsmooth Analysis and Related Topics (Dedicated to the Memory of V.F. Demyanov), CNSA 2017. Proceedings, 7973965.

Ivanov G., Alferov G., Gorovenko P., Sharlay A. Estimation of periodic solutions number of first-order differential equations (2018) AIP Conference Proceedings, 1959. 080006.

Kadry S., Alferov G., Ivanov G., Sharlay A. Almost Periodic Solutions of First-Order Ordinary Differential Equations, Mathematics 2018, Vol. 6, № 9. P.171, DOI: 10.3390/math 6090171.

Kadry,S., Alferov,G., Ivanov,G., Korolev,V. Possible solutions of a linear homogeneous system of differential eqations. (2020) AIP Conference Proceedings, 2020. 2293, 060002

Ivanov G., Alferov G., Gorovenko P., Sharlay A. Estimation of periodic solutions number of first-order differential equations (2018) AIP Conference Proceedings, 1959. P. 080006, DOI: 10.1063/1.5034723.

Alferov G., Ivanov G., Efimova P., Sharlay A. Study on the structure of limit invariant sets of stationary control systems with nonlinearity of hysteresis type (2017) AIP Conference Proceedings, 1863. P.080003. DOI: 10.1063/1.4992264.

Alferov G.V., Ivanov G.G., Efimova P.A. The structural study of limited invariant sets of relay stabilized systems (2017) Mechanical Systems: Research, Applications and Technology. P. 101–164.

Kadry S., Alferov G., Ivanov G., Korolev V. About of the asymptotical stability of solutions of systems of ordinary differential equations (2020) AIP Conference Proceedings, 2020. 2293. 060005.

Kadry S., Alferov G., Ivanov G., Korolev V. Investigation of stability of solutions of systems of ordinary differential equations. (2020) AIP Conference Proceedings. 2293. 060004.

Иванов Г.Г., Алфёров, Г.В., Королёв В.С. Аппарат производных чисел и возможности применения. // Вестник Пермского университета. Математика. Механика. Информатика. 2021. Вып. 3(54). С. 5–18.

Иванов Г.Г., Алфёров Г.В., Горовенко П.А. Производные числа функций одной переменной // Вестник Пермского университета. Математика. Механика. Информатика. 2018. Вып. 3(42). С. 5–19.

Загрузки

Опубликован

31.03.2022

Как цитировать

Иванов, Г. Г., Алферов, Г. В., & Королев, В. С. (2022). Теорема об области асимптотической устойчивости и её приложения. ВЕСТНИК ПЕРМСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. ИНФОРМАТИКА, (1 (56), 5–13. https://doi.org/10.17072/1993-0550-2022-1-5-13