Импеданс реакции выделения водорода по механизму Фольмера-Гейровского при различной форме зависимости теплоты адсорбции водорода от степени заполнения
DOI:
https://doi.org/10.17072/2223-1838-2020-4-370-384Ключевые слова:
реакция выделения водорода, неленгмюровская адсорбция водорода, импеданс, поляризационная криваяАннотация
Рассчитаны поляризационные кривые и зависимости элементов эквивалентной схемы (R1, R2, C2)от перенапряжения h для реакции выделения водорода при нелинейном изменении свободной энергии адсорбции водорода DGads с ростом степени заполнения q. Показано, что поляризационные кривые слабо зависят от вида функции g(q) = DGads/RT, тогда как параметры фарадеевского импеданса существенно изменяются с g(q). При зависимой от заполнения DGads наблюдаются следующие отличия от ленгмюровской адсорбции: 1) появление индуктивной составляющей импеданса при меньшей константе скорости (при h = 0) реакции Гейровского по сравнению с константой скорости реакции Фольмера и при равных коэффициентах переноса стадий; 2) не параллельный ход lgR1,h- и lgR2,h-зависимостей при высоких катодных поляризациях.Библиографические ссылки
Библиографический список
Фрумкин А.Н., Багоцкий В.С., Иофа 3.А., Кабанов Б.Н. Кинетика электродных про-цессов. М.: Изд-во Моск. ун-та, 1952. 319 с.
Кришталик Л.И. Кинетика реакций на гра-нице раздела металл-раствор // Двойной слой и электродная кинетика. М.: Наука, 1981. С.198–282.
Saraby-Reintjes A.J. The hydrogen evolution reaction under mixed kinetic control // Jour-nal of the Chemical Society, Faraday Trans-actions I: Physical Chemistry in Condensed Phases. 1986. V. 82, № 11. P. 3343–3355.
Conway B.E., Angerstein-Kozlowska H., Sharp W.B.A. Temperature and pressure effects on surface processes at noble metal electrodes. Part 1. Entropy of chemisorption of H at Pt surfaces // Journal of the Chemical Society, Faraday Transactions I: Physical Chemistry in Condensed Phases. 1978. V. 74. P. 1373–1389.
Garcia-Araes N., Climent V., Feliu J.M. De-termination of the entropy of formation of the Pt(111) | perchloric acid solution inter-face. Estimation of the entropy of adsorbed hydrogen and OH species // Journal of Solid State Electrochemistry. 2008. V.12. P. 387–398.
Garcia-Araes N., Climent V., Feliu J.M. Anal-ysis of temperature effects on hydrogen and OH adsorption on Pt(111), Pt(100) and Pt(110) by means of Gibbs thermodynamics // Journal of Electroanalytical Chemistry. 2010. V. 649.
P. 69–82.
Yang G., Akhade S.A., Chen X., Liu Y., Lee M.-S., Glezakou V.-A., Rousseau R., Lercher J.A. Nature of hydrogen adsorption on plati-num in the aqueous phase // Angewandte Chemie International Edition. 2019. V. 58, № 11.
Р. 3527–3532.
Сокольский Д.В., Друзь В.А. Введение в теорию гетерогенного катализа. М.: Выс-шая школа, 1981. 215 с.
Christmann K. Interaction of hydrogen with solid surfaces // Surface Science Reports. 1988.
V. 9. P. 1–163.
Roudgar A., Groß A. Hydrogen adsorption energies on bimetallic overlayer systems at the solid–vacuum and the solid–liquid inter-face // Surface Science. 2005. V. 597. P. 42–50.
Ishikawa Y., Mateo J.J., Tryk D.A., Cabrera C.R. Direct molecular dynamics and density-functional theoretical study of the electro-chemical hydrogen oxidation reaction and underpotential deposition of H on Pt(111) // Journal of Electroanalytical Chemistry. 2007. V. 607.
P. 37–46.
Jinnouchi R., Kodama K., Morimoto Y. DFT calculations on H, OH and O adsorbate for-mations on Pt(111) and Pt(332) electrodes // Journal of Electroanalytical Chemistry. 2014.
V. 716. P. 31–44.
Gossenberger F., Juarez F., Groß A. Sulfate, bisulfate, and hydrogen co-adsorption on Pt(111) and Au(111) in an electrochemical environment // Frontiers in Chemistry. 2020. V. 8. Article 634.
Will F.G. Hydrogen adsorption on platinum single crystal electrodes. I. Isotherms and heats of adsorption // Journal of the Electro-chemical Society. 1965. V. 112, № 4. Р. 451–455.
Breiter M.W. Characterization of the surface of platinum metals and platinum metal alloys by hydrogen adsorption and comparison of the results with other techniques // Electro-chemical Processes in Fuel Cells. New York, Springer Verlag, 1969. P. 48–77.
Ross P.N. Hydrogen chemisorption on Pt single crystal surfaces in acidic solutions // Surface Science. 1981. V. 102. P. 463–485.
Jerkiewicz G., Zolfaghari A. Comparison of hydrogen electroadsorption from the electro-lyte with hydrogen adsorption from the gas phase // Journal of the Electrochemical Socie-ty. 1996. V. 143, № 4. P. 1240–1248.
Гарсиа-Араес Н., Климент В., Фелью Х.М. Температурные эффекты на платиновых монокристаллических электродах // Элек-трохимия. 2012. Т. 48, № 3. С. 299–308.
Segal E. Modèle du gaz électronique bidi-mensionnel dans la chemisorption sur métaux // Revue Roumaine de Chimie. 1969. V. 14, № 1.
P. 45–55.
Агеев В.Н., Бурмистрова О.П., Потехина Н.Д., Соловьев С.М. Хемосорбция водоро-да на металлах // Взаимодействие водорода с металлами. М.: Наука, 1987. С. 18–60.
Christmann K. Adsorption of hydrogen on a nickel (100) surface // Zeitschrift für Naturforschungen. 1979. Bd. 34a. S. 22–29.
Lischka M., Groß A. Hydrogen on palladium: A model system for the interaction of atoms and molecules with metal surfaces // Recent Developments in Vacuum Science and Tech-nology / J. Dąbrowski (Ed.). 2003. P. 111–132.
Johansson M., Skúlason E., Nielsen G., Mur-phy S., Nielsen R.M., Chorkendorff I. Hydro-gen adsorption on palladium and palladium hydride at 1 bar // Surface Science. 2010. V. 604.
P. 718–729.
Gudmundsdóttir S., Skúlason E., Weststrate K.-J., Juurlink L., Jónsson H. Hydrogen ad-sorption and desorption at the Pt(110)-(12) surface: experimental and theoretical study // Physical Chemistry Chemical Physics. 2013. V. 15.
P. 6323–6332.
Groß A. Ab initio molecular dynamics simu-lations of the adsorption of H2 on palladium surfaces // ChemPhysChem. 2010. V. 11.
P. 1374–1381.
Gileadi E., Conway B.E. Kinetic theory of adsorption of intermediates in electrochemi-cal catalysis // Journal of Chemical Physics. 1963. V. 39, № 12. P. 3420–3430.
Фрумкин А.Н. Об исследовании механизма электролитического выделения водорода методом введения дополнительных коли-честв атомарного водорода на поверхность электрода // Ж. физ. химии. 1957. Т. 31, № 8. С. 1875–1890.
Lasia A. Electrochemical Impedance Spec-troscopy and its Applications. Springer Sci-ence + Business Media, New York, 2014. 367 p.
Кичигин В.И., Шерстобитова И.Н., Куз-нецов В.В. Импеданс реакции выделения водорода на железном электроде в раство-рах серной кислоты. I. Чистые растворы H2SO4 // Электрохимия. 1976. Т. 12, № 2. С. 249–255.
Lasia A. Mechanism and kinetics of the hy-drogen evolution reaction // International Journal of Hydrogen Energy. 2019. V. 44. P. 19484–19518.
Kichigin V.I., Shein A.B. Diagnostic criteria for hydrogen evolution mechanisms in elec-trochemical impedance spectroscopy // Elec-trochimica Acta. 2014. V. 138. P. 325–333.
References
Frumkin, A.N., Bagotsky, V.S., Iofa, Z.A. and Kabanov, B.N. (1952), Kinetika elektrodnykh protsessov [Kinetics of electrode processes], Moscow University, Moscow. (In Russ.)
Krishtalik, L.I. (1981), “The kinetics of reac-tions at the metal-solution interface”, in: Dvoinoy sloy i elektrodnaya kinetika [Double layer and electrode kinetics], Nauka, Mos-cow, pp. 198–282. (In Russ.)
Saraby-Reintjes, A.J. (1986), “The hydrogen evolution reaction under mixed kinetic con-trol”, Journal of the Chemical Society, Fara-day Transactions I: Physical Chemistry in Condensed Phases, vol. 82, no 11, pp. 3343–3355.
Conway, B.E., Angerstein-Kozlowska, H. and Sharp, W.B.A. (1978), “Temperature and pressure effects on surface processes at no-ble metal electrodes. Part 1. Entropy of chemisorption of H at Pt surfaces”, Journal of the Chemical Society, Faraday Transac-tions I: Physical Chemistry in Condensed Phases, vol. 74, pp. 1373–1389.
Garcia-Araes, N., Climent, V. and Feliu, J.M. (2008), “Determination of the entropy of formation of the Pt(111) | perchloric acid so-lution interface. Estimation of the entropy of adsorbed hydrogen and OH species”, Journal of Solid State Electrochemistry, vol.12, pp. 387–398.
Garcia-Araes, N., Climent, V. and Feliu, J.M. (2010), “Analysis of temperature effects on hydrogen and OH adsorption on Pt(111), Pt(100) and Pt(110) by means of Gibbs thermodynamics”, Journal of Electroanalyti-cal Chemistry, vol. 649, pp. 69–82.
Yang, G., Akhade, S.A., Chen, X., Liu, Y., Lee, M.-S., Glezakou, V.-A., Rousseau, R. and Lercher J.A. (2019), “Nature of hydro-gen adsorption on platinum in the aqueous phase”, Angewandte Chemie International Edition,
vol. 58, no 11, pp. 3527–3532.
Sokolsky, D.V. and Druz’, V.A. (1981), Vvedenie v teoriyu geterogennogo kataliza [Introducrion to the theory of heterogeneous catalysis], Vysshaya shkola, Moscow. (In Russ.)
Christmann, K. (1988), “Interaction of hy-drogen with solid surfaces”, Surface Science Reports, vol. 9, pp. 1–163.
Roudgar, A. and Groß, A. (2005), “Hydro-gen adsorption energies on bimetallic over-layer systems at the solid–vacuum and the solid–liquid interface”, Surface Science, vol. 597,
pp. 42–50.
Ishikawa, Y., Mateo, J.J., Tryk, D.A. and Cabrera, C.R. (2007), “Direct molecular dy-namics and density-functional theoretical study of the electrochemical hydrogen oxida-tion reaction and underpotential deposition of H on Pt(111)”, Journal of Electroanalytical Chemistry,
vol. 607, pp. 37–46.
Jinnouchi, R., Kodama, K. and Morimoto, Y. (2014), “DFT calculations on H, OH and O adsorbate formations on Pt(111) and Pt(332) electrodes”, Journal of Electroanalyt-ical Chemistry, vol. 716. pp. 31–44.
Gossenberger, F., Juarez, F. and Groß, A. (2020), “Sulfate, bisulfate, and hydrogen co-adsorption on Pt(111) and Au(111) in an electrochemical environment”, Frontiers in Chemistry, vol. 8, Article 634.
Will, F.G. (1965), “Hydrogen adsorption on platinum single crystal electrodes. I. Iso-therms and heats of adsorption”, Journal of the Electrochemical Society, vol. 112, no 4,
pp. 451–455.
Breiter, M.W. (1969), “Characterization of the surface of platinum metals and platinum metal alloys by hydrogen adsorption and comparison of the results with other tech-niques”, Electrochemical Processes in Fuel Cells. New York, Springer Verlag, pp. 48–77.
Ross, P.N. (1981), “Hydrogen chemisorp-tion on Pt single crystal surfaces in acidic so-lutions”, Surface Science, vol. 102, pp. 463–485.
Jerkiewicz, G. and Zolfaghari, A. (1996), “Comparison of hydrogen electroadsorption from the electrolyte with hydrogen adsorp-tion from the gas phase”, Journal of the Elec-trochemical Society, vol. 143, no 4, pp.1240–1248.
Garcia-Araes, N., Climent, V. and Feliu, J.M. (2012),.”Temperature effects on platinum single-crystal electrodes”, Electrochemistry, vol. 48, no 3, pp. 299–308. (In Russ.)
Segal, E. (1969), “Modèle du gaz élec-tronique bidimensionnel dans la chemisorp-tion sur métaux”, Revue Roumaine de Chimie, vol. 14, no 1, pp. 45–55.
Ageev, V.N., Burmistrova, O.P., Potekhina, N.D. and Soloviev, S.M. (1987), “Chemi-sorption of hydrogen on metals”, in: Vzai-modeistvie vodoroda s metallami [Interaction of hydrogen with metals], Nauka, Moscow, pp. 18–60.
(In Russ.)
Christmann, K. (1979), “Adsorption of hy-drogen on a nickel (100) surface”, Zeitschrift für Naturforschungen, vol. 34a, pp. 22–29.
Lischka, M. and Groß, A. (2003), “Hydro-gen on palladium: A model system for the in-teraction of atoms and molecules with metal surfaces”, in: J. Dąbrowski (Ed.)., Recent Developments in Vacuum Science and Tech-nology,
pp. 111–132.
Johansson, M., Skúlason, E., Nielsen, G., Murphy, S., Nielsen, R.M. and Chorkendorff, I. (2010), “Hydrogen adsorption on palladi-um and palladium hydride at 1 bar”, Surface Science, vol. 604, pp. 718–729.
Gudmundsdóttir, S., Skúlason, E., Weststrate, K.-J., Juurlink, L. and Jónsson H. (2013), “Hydrogen adsorption and desorp-tion at the Pt(110)-(12) surface: experi-mental and theoretical study”, Physical Chemistry Chemical Physics, vol. 15, pp. 6323–6332.
Groß, A. (2010), “Ab initio molecular dy-namics simulations of the adsorption of H2 on palladium surfaces”, ChemPhysChem, vol. 11,
pp. 1374–1381.
Gileadi, E. and Conway, B.E. (1963), “Ki-netic theory of adsorption of intermediates in electrochemical catalysis”, Journal of Chemi-cal Physics, vol. 39, no 12, pp. 3420–3430.
Frumkin, A.N. (1957), “On investigation of the mechanism of electrolytic hydrogen evo-lution by means of supply of additional amounts of atomic hydrogen to the electrode surface”, Russian Journal of Physical Chem-istry, vol. 31, no 8, pp. 1875–1890. (In Russ.)
Lasia, A. (2014), Electrochemical Imped-ance Spectroscopy and its Applications, New York, Springer Science + Business Media.
Kichigin, V.I., Sherstobitova, I.N. and Kuz-netsov, V.V. (1976), “Impedance of the hy-drogen evolution reaction on iron electrode in sulfuric acid solutions. I. Pure solutions of H2SO4”, Electrochemistry, vol. 12, no 2, pp. 249–255. (In Russ.)
Lasia, A. (2019), “Mechanism and kinetics of the hydrogen evolution reaction”, Interna-tional Journal of Hydrogen Energy, vol. 44,
pp. 19484–19518.
Kichigin, V.I. and Shein, A.B. (2014), “Di-agnostic criteria for hydrogen evolution mechanisms in electrochemical impedance spectroscopy”, Electrochimica Acta, vol. 138,
pp. 325–333.