Об экстремумах на зависимости сопротивления переноса заряда в реакции выделения водорода от потенциала электрода
DOI:
https://doi.org/10.17072/223-1838-2021-2-154-164Ключевые слова:
реакция выделения водорода, механизм Фольмера – Гейровского, сопротивление переноса заряда, кинетические параметрыАннотация
Дан анализ формы кривых «сопротивление переноса заряда – перенапряжение» для реакции выделения водорода, протекающей по механизму Фольмера – Гейровского.. Показано, что, в зависимости от соотношения кинетических параметров стадий реакции, возможны три случая: 1) экстремумы на этих кривых отсутствуют; 2) имеется один максимум; 3) имеются минимум и максимум. Обсуждаются способы определения кинетических параметров из кривых с экстремумами.Библиографические ссылки
Список литературы
Sluyters-Rehbach M. Impedances of electrochemical systems: Terminology, nomenclature and representation. Part I: Cells with metal electrodes and liquid solutions (IUPAC Recommendations 1994) // Pure and Applied Chemistry. 1994. V. 66, № 9. P. 1831–1891.
Lasia A. Electrochemical Impedance Spectroscopy and its Applications. New York: Springer Science + Business Media, 2014. 367 p.
Harrington D.A., van den Driessche P.Mechanism and equivalent circuits in electrochemical impedance spectroscopy // ElectrochimicaActa. 2011. V. 56. P. 8005–8013.
Harrington D.A. The rate-determining step in electrochemical impedance spectroscopy // Journal of Electroanalytical Chemistry. 2015. V. 737. P. 30–36.
Harrington D.A., Conway B.E. Ac impedance of faradaic reactions involving electrosorbed intermediates – I. Kinetic theory // Electrochimica Acta. 1987. V. 32, № 12. P. 1703–1712.
Kichigin V.I., Shein A.B. An electrochemical study of the hydrogen evolution reaction at YNi2Ge2 and LaNi2Ge2 electrodes in alkaline solution // Journal of Electroanalytical Chemistry. 2018. V. 830–831. P. 72–79.
Lasia A. Mechanism and kinetics of the hydrogen evolution reaction // International Journal of Hydrogen Energy. 2019. V. 44, № 36. P. 19484–19518.
Kichigin V.I., Shein A.B. Diagnostic criteria for hydrogen evolution mechanisms in electro-chemical impedance spectroscopy // Electrochimica Acta. 2014. V. 138. P. 325–333.
Lasia A. Impedance spectroscopy applied to the study of electrocatalytic processes // Ency-clopedia of Interfacial Chemistry: Surface Science and Electrochemistry / K. Wandelt editor. Elsevier. 2018. P. 241–263.
Эренбург Р.Г. Кинетические уравнения и экстраполированные стехиометрические чис-ла механизма разряд – электрохимическая десорбция // Электрохимия. 1974. Т. 10, № 11. С. 1641–1648.
de Chialvo M.R.G., Chialvo A.C. Existence of two sets of kinetic parameters in the correla-tion of the hydrogen electrode reaction // Journal of the Electrochemical Society. 2000. V. 147, № 5. P. 1619–1622.
Lasia A., Rami A. Kinetics of hydrogen evolution on nickel electrodes // Journal of Electro-analytical Chemistry. 1990. V. 294. P. 123–141.
Licht S. pH measurement in concentrated alkaline solutions // Analytical Chemistry. 1985. V.57, № 2. P.514–519.
Einerhand R.E.F., Visscher W.H.M., Barendrecht E. pH measurement in strong KOH solu-tions with a bismuth electrode // Electrochimica Acta. 1989. V. 34, № 3. P. 345–353.
Kichigin V.I., Shein A.B. Influence of hydrogen absorption on the potential dependence of the Faradaic impedance parameters of hydrogen evolution reaction // Electrochimica Acta. 2016. V. 201. P. 233–239.
References
Sluyters-Rehbach, M. (1994) “Impedances of electrochemical systems: Terminology, no-menclature and representation. Part I: Cells with metal electrodes and liquid solutions (IUPAC Recom-mendations 1994)”, Pure and Applied Chemistry, vol. 66, no. 9, pp. 1831–1891.
Lasia, A. (2014) Electrochemical Impedance Spectroscopy and its Applications, Springer Science + Business Media, New York.
Harrington, D.A. and van den Driessche, P. (2011) “Mechanism and equivalent circuits in electrochemical impedance spectroscopy”, Electrochimica Acta, vol. 56, pp. 8005–8013.
Harrington, D.A. (2015) “The rate-determining step in electrochemical impedance spectros-copy”, Journal of Electroanalytical Chemistry, vol. 737, pp. 30–36.
Harrington, D.A. and Conway, B.E. (1987) “Ac impedance of faradaic reactions involving electrosorbed intermediates – I. Kinetic theory”, Electrochimica Acta, vol. 32, no 12, pp. 1703–1712.
Kichigin, V.I. and Shein, A.B. (2018) “An electrochemical study of the hydrogen evolution reaction at YNi2Ge2 and LaNi2Ge2 electrodes in alkaline solution”, Journal of Electroanalytical Chemis-try, vol. 830–831, pp. 72–79.
Lasia, A. (2019) “Mechanism and kinetics of the hydrogen evolution reaction”, International Journal of Hydrogen Energy, vol. 44, no 36, pp. 19484–19518.
Kichigin, V.I. and Shein, A.B. (2014) “Diagnostic criteria for hydrogen evolution mecha-nisms in electrochemical impedance spectroscopy”, Electrochimica Acta, vol. 138, pp. 325–333.
Lasia, A. (2018) Impedance spectroscopy applied to the study of electrocatalytic processes. In K. Wandelt (ed.) Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Else-vier, pp. 241–263.
Erenburg, R.G. (1974) “Kinetic equations and extrapolated stoichiometric numbers of the discharge – electrochemical desorption mechanism”, Electrochemistry, vol. 10, no 11, pp. 1641–1648. (In Russ.)
de Chialvo, M.R.G. and Chialvo, A.C. (2000) “Existence of two sets of kinetic parameters in the correlation of the hydrogen electrode reaction”, Journal of the Electrochemical Society, vol. 147, no5, pp. 1619–1622.
Lasia, A. and Rami, A. (1990) “Kinetics of hydrogen evolution on nickel electrodes”, Jour-nal of Electroanalytical Chemistry, vol.294, pp. 123–141.
Licht, S. (1985) “pH measurement in concentrated alkaline solutions”, Analytical Chemistry, vol.57, no 2, pp.514–519.
Einerhand, R.E.F., Visscher, W.H.M., and Barendrecht E. (1989) “pH measurement in strong KOH solutions with a bismuth electrode”, Electrochimica Acta, vol. 34, no3, pp. 345–353.
Kichigin, V.I. and Shein, A.B. (2016) “Influence of hydrogen absorption on the potential dependence of the Faradaic impedance parameters of hydrogen evolution reaction”, Electrochimica Ac-ta, vol. 201, pp. 233–239.