On the use of equivalent circuits with identical impedance spectra in studying the kinetics of the hydrogen evolution reaction
DOI:
https://doi.org/10.17072/2223-1838-2021-1-82-93Keywords:
equivalent circuits with identical spectra, hydrogen evolution reaction, mechanismAbstract
Two equivalent circuits are considered that display the same frequency dependence and can be applied to the analysis of impedance data in studying the kinetics and mechanism of the hydrogen evolution reaction. It is shown that the use of any one of these circuits leads to the same conclusions about the mechanism of hydrogen evolution. However, it is pointed out that there are cases when one of the identical circuits is preferable.References
Harrington D.A., Conway B.E. AC impedance of Faradaic reactions involving electrosorbed intermediates. I. Kinetic theory // Electrochimica Acta. 1987. V.32, № 12. Р.1703–1712.
Lasia A. Impedance spectroscopy applied to the study of electrocatalytic processes // Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, 2018. P. 241–263.
Новосельский И.М., Гудина Н.Н., Фетисов Ю.И. О тождественных эквивалентных схемах замещения импеданса // Электрохимия. 1972. Т.8, № 4. С.565-567.
Buteau S., Dahn D.C., Dahn J.R. Explicit conversion between different equivalent circuit models for electrochemical impedance analysis of lithium-ion cells // Journal of The Electrochemical Society. 2018. V. 165, № 2. P. A228–A234.
Lasia A. Mechanism and kinetics of the hydrogen evolution reaction // International Journal of Hydrogen Energy. 2019. V. 44, № 36. P. 19484–19518.
Lasia A. Electrochemical Impedance Spectroscopy and its Applications. Springer Science+Business Media, New York, 2014.
Lasia A., Rami A. Kinetics of hydrogen evolution on nickel electrodes // Journal of Electroanalytical Chemistry. 1990. V. 294. P. 123–141.
Jakšić J.M., Vojnović M.V., Krstajić N.V. Kinetic analysis of hydrogen evolution at Ni–Mo alloy electrodes // Electrochimica Acta. 2000. V. 45. P. 4151–4158.
Krstajić N., Popović M., Grgur B., Vojnović M., Šepa D. On the kinetics of the hydrogen evolution reaction on nickel in alkaline solution. Part I. The mechanism // Journal of Electroanalytical Chemistry. 2001. V. 512. P. 16–26.
Rosalbino F., Borzone G., Angelini E., Raggio R. Hydrogen evolution reaction on Ni-/RE (RE = /rare earth) crystalline alloys // Electrochimica Acta. 2003. V. 48. P. 3939–3944.
Birry L., Lasia A. Studies of the hydrogen evolution reaction on Raney nickel–molybdenum electrodes // Journal of Applied Electrochemistry. 2004. V. 34. P. 735–749
Elezović N.R., Jović V.D., Krstajić N.V. Kinetics of the hydrogen evolution reaction on Fe–Mo film deposited on mild steel support in alkaline solution // Electrochimica Acta. 2005. V. 50. P. 5594–5601.
Creţu R., Kellenberger A., Vaszilcsin N. Enhancement of hydrogen evolution reaction on platinum cathode by proton carriers // International Journal of Hydrogen Energy. 2013. V. 38. P. 11685–11694.
Franceschini E.A., Lacconi G.I., Corti H.R. Kinetics of hydrogen evolution reaction on nickel modified by spontaneous Ru deposition: A rotating disk electrode and impedance spectroscopy approach // International Journal of Hydrogen Energy. 2016. V. 41, № 5. P. 3326–3338.
Батраков В.В., Иофа З.А. Измерение импеданса железного электрода с помощью переменного тока // Электрохимия. 1965. Т.1, № 2. С.123–129.
Шавкунов С.П., Шерстобитова И.Н., Кузнецов В.В. Реакция электрохимического выделения водорода на железе в растворах КОН. Импеданс Fe-электрода при различных значениях рН и температуры // Электрохимия. 1983. Т.19, № 5. С.706–709.
Кичигин В.И., Шерстобитова И.Н., Шеин А.Б. Импеданс электрохимических и коррозионных систем. Пермь, 2009.
Kichigin V.I., Shein A.B. Diagnostic criteria for hydrogen evolution mechanisms in electrochemical impedance spectroscopy // Electrochimica Acta. 2014. V. 138. P. 325–333.
Kichigin V.I., Shein A.B. Kinetics and mechanism of hydrogen evolution reaction on cobalt silicides in alkaline solutions // Electrochimica Acta. 2015. V. 164. P. 260–266.
References
Harrington, D.A. and Conway, B.E. (1987), “AC impedance of Faradaic reactions involving electrosorbed intermediates. I. Kinetic theory”, Electrochimica Acta, vol. 32, no 12. pp. 1703–1712.
Lasia, A. (2018), “Impedance spectroscopy applied to the study of electrocatalytic processes”, Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, pp. 241–263.
Novoselsky, I.M., Gudina, N.N., and Fetisov, Yu.I. (1972), “On equivalent circuits with identical impedance spectra”, Electrochemistry, vol. 8, no 4, pp. 565–567. (In Russ.)
Buteau, S., Dahn, D.C., and Dahn, J.R. (2018), “Explicit conversion between different equivalent circuit models for electrochemical impedance analysis of lithium-ion cells”, Journal of The Electrochemical Society, vol. 165, no 2, pp. A228–A234.
Lasia, A. (2019), “Mechanism and kinetics of the hydrogen evolution reaction”, International Journal of Hydrogen Energy, vol. 44, no 36, pp. 19484–19518.
Lasia, A. (2014), Electrochemical Impedance Spectroscopy and its Applications, New York, Springer Science + Business Media.
Lasia, A. and Rami, A. (1990), “Kinetics of hydrogen evolution on nickel electrodes”, Journal of Electroanalytical Chemistry, vol. 294, pp. 123–141.
Jakšić, J.M., Vojnović, M.V., and Krstajić, N.V. (2000), “Kinetic analysis of hydrogen evolution at Ni–Mo alloy electrodes”, Electrochimica Acta, vol. 45, pp. 4151–4158.
Krstajić, N., Popović, M., Grgur, B., Vojnović, M., and Šepa, D. (2001), “On the kinetics of the hydrogen evolution reaction on nickel in alkaline solution. Part I. The mechanism”, Journal of Electroanalytical Chemistry, vol. 512, pp. 16–26.
Rosalbino, F., Borzone, G., Angelini, E., and Raggio, R. (2003), “Hydrogen evolution reaction on Ni-/RE (RE = /rare earth) crystalline alloys”, Electrochimica Acta, vol. 48, pp. 3939–3944.
Birry, L. and Lasia, A. (2004), “Studies of the hydrogen evolution reaction on Raney nickel–molybdenum electrodes”, Journal of Applied Electrochemistry, vol. 34, pp. 735–749,
Elezović, N.R., Jović, V.D., and Krstajić, N.V. (2005), “Kinetics of the hydrogen evolution reaction on Fe–Mo film deposited on mild steel support in alkaline solution”, Electrochimica Acta, vol. 50, pp. 5594–5601.
Creţu, R., Kellenberger, A., and Vaszilcsin, N. (2013), “Enhancement of hydrogen evolution reaction on platinum cathode by proton carriers”, International Journal of Hydrogen Energy, vol. 38, pp. 11685–11694.
Franceschini, E.A., Lacconi, G.I., and Corti, H.R. (2016), “Kinetics of hydrogen evolution reaction on nickel modified by spontaneous Ru deposition: A rotating disk electrode and impedance spectroscopy approach”, International Journal of Hydrogen Energy, vol. 41, no 5, pp. 3326–3338.
Batrakov, V.V. and Iofa, Z.A. (1965), “Measurement of the impedance of an iron electrode using alternating current”, Electrochemistry, vol. 1, no 2, pp. 123–129. (In Russ.)
Shavkunov, S.P., Sherstobitova, I.N., and Kuznetsov, V.V. (1983), “The reaction of electrochemical hydrogen evolution on iron in KOH solutions. Impedance of a Fe electrode at different values of pH and temperature”, Electrochemistry, vol.19, no 5, pp. 706–709. (In Russ.)
Kichigin, V.I., Sherstobitova, I.N., and Shein, A.B. (2009), Impedans elektrokhimicheskikh i korrozionnykh sistem [Impedance of electrochemical and corrosion systems], Perm State University, Perm. (In Russ.)
Kichigin, V.I. and Shein, A.B. (2014), “Diagnostic criteria for hydrogen evolution mechanisms in electrochemical impedance spectroscopy”, Electrochimica Acta, vol. 138, pp. 325–333.
Kichigin, V.I. and Shein, A.B. (2015), “Kinetics and mechanism of hydrogen evolution reaction on cobalt silicides in alkaline solutions”, Electrochimica Acta, vol. 164, pp. 260–266.