Synthesis and optical properties of new 4-substituted pyrimidines - D-A type chromophores
DOI:
https://doi.org/10.17072/2223-1838-2021-2-139-153Keywords:
pyrimidine, arylmethylketone, hetarylmethylketone, three-component synthesis, chromophore, forbidden band gapAbstract
The set of 4-aryl(hetaryl)pyrimidines, where aryl/hetaryl is a highly electron donating substituent was synthesized. Optical and electrochemical properties of the synthesized compounds were studied and the values of a forbidden band gap energy ( ) were determined. The narrowest bandgap was found to be inherent to 4-ferrocenylpyrimidine (1.8 eV) and the most long-wavelength emission maximum ‑ to para-substituted pyrimidine which structure embeds a thiophene moiety between N-hexylcarbazolyl fragment and the pyrimidine core (577 нм).References
Lagoja I. M. Pyrimidine as constituent of natural biologically active compounds// Chemistry and Biodiversity. 2005. V. 2, № 1. P. 1-50.
Vitaku E., Smith D. T., Njardarson J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals: miniperspective //Journal of medicinal chemistry. 2014. V. 57, № 24. P. 10257-10274.
Rahman Md L., Hegde G., Yusoff M.M., Malek M. N. F. A., Srinivasa H.T., Kumar S. New pyrimidine-based photo-switchable bent-core liquid crystals //New Journal of Chemistry. 2013. V. 37, № 8. P. 2460-2467.
Sofiani Z., Khannyra S., Boucetta A., ElJouad M., Bouchouit K., Serrar H., Boukhris S., Souizi A., Migalska-Zalas A. Nonlinear optical properties of new synthesized conjugated organic molecules based on pyrimidine and oxazepine //Optical and Quantum Electronics. 2016. V. 48, № 5. P. 282.
Achelle S., Baudequin C. Recent advances in pyrimidine derivatives as luminescent, photovoltaic and non-linear optical materials //Targets Heterocyclic Systems. 2013. V. 17, P. 1-34.
Onozawa-Komatsuzaki, N., Murakami T. N., Funaki T., Kazaoui S ., Chikamatsu M., Tampo H., Wang W.-W., Sugimoto M. Effect of aromatic nitrogen heterocycle treatment on the performance of perovskite solar cells //Japanese Journal of Applied Physics. 2018. V. 57, № 8S3. P. 08RE08.
Weng J., Mei Q., Fan Q., Ling Q., Tong B., Huang W. Bipolar luminescent materials containing pyrimidine terminals: synthesis, photophysical properties and a theoretical study// RSC Advances. 2013. V.3, P. 21877-21887.
Verbitskiy E. V., Cheprakova E. M., Slepukhin P. A., Kodess M. I., Ezhikova M. A., Pervova M.G., Rusinov G. L., Chupakhin O. N., Charushin V. N. Combination of the Suzuki-Miyaura cross-coupling and nucleophilic aromatic substitution of hydrogen (SNH) reactions as a versatile route to pyrimidines bearing thiophene fragments // Tetrahedron. 2012, V.68, P. 5445-5452.
Sasada T., Kobayashi F., Sakai N., Konakahara T. An unprecedented approach to 4,5-disubstituted pyrimidine derivatives by a ZnCl2-Catalyzed three-component coupling reaction// Organic Letters. 2009. V. 11, № 1. P. 2161-2164.
Baran P.S., Shenvi R.A., Nguyen S.A. One-step synthesis of 4, 5-disubstituted pyrimidines using commercially available and inexpensive reagents// Heterocycles. 2006. V. 7, P. 581-586.
Yang G., Jia Q., Chen L., Du Z., Wang J. Direct access to pyrimidines through organocatalytic inverse-electron-demand Diels-Alder reaction of ketones with 1,3,5-triazine// RSC Advances. 2015. V.5, № 94. P.76759-76763.
Upare A., Sathyanarayana P., Kore R., Sharma K., Bathula S.R. Catalyst free synthesis of mono- and disubstituted pyrimidines from O-acyl oximes// Tetrahedron Letters. 2018. V. 59, № 25. P.2430-2433.
Soheilizad M, Adiba M, Sajjadifarb S. One-pot and three-component synthesis of substituted pyrimidines catalysed by boron sulfuric acid under solvent-free conditions// Journal of Chemical Research. 2014. V.38, № 9. P.524-527.
Gronowitz, S. Some substitution reactions of 2- and 3-(4-pyrimidinyl)thiophene// Arkiv Foer Kemi. 1967, V. 28, № 38. P. 602.
Jadhav S.D., Singh A. Oxidative annulations involving DMSO and formamide: K2S2O8 mediated syntheses of quinolines and pyrimidines// Orgаnic Letters. 2017. V. 19, № 20. P.5673-5676.
Herbivo C., Comel A., Kirsch G., Raposo M. M. M. Synthesis of 5-aryl-5′-formyl-2, 2′-bithiophenes as new precursors for nonlinear optical (NLO) materials // Tetrahedron. 2009. V. 65, № 10. P.2079-2086.
Антуфьева А. Д., Дмитриев М. В., Майорова О. А., Мокрушин И. Г., Галеев А. Р., Шкляева Е. В., Абашев Г. Г. Новые π-сопряженные ферроценилзамещённые гетероциклические системы, включающие электронодефицитные ароматические азагетероциклы// Журнал органической химии. 2018. Т. 54, № 9. С.1337-1344.
Антуфьева А. Д., Ахматзянова Д. Р., Дмитриев М. В., Шкляева Е. В., Абашев Г. Г. Синтез и структура 2-(1н-индол-1-ил)-6-ферроценил-4-(2-хлоримидазо[1,2-a]-пиридин-3-ил)пирими-дина// Журнал общей химии. 2018. Т. 88. № 6, С. 922—926.
The chemistry of heterocyclic compounds, thiophene and its derivatives / Ed. H.D. Hartought. New York. Willey-Interscience, 1952. P. 502.
Дорофеенко Г. Н, Жданов Ю. А., Дуленко В. И. Хлорная кислота и ее соединения в органическом синтезе// Успехи химии. 1965. Т. 34, № 2. С. 88-104.
Гранберг К. И., Кабачник M. M., Сочинова Л. Г., Теренин В. И. Практические работы по органической химии. 2001. Электронный ресурс. Режим доступа: http://www.chem.msu.su/rus/teaching/granberg/6.htm
Лопатинский В. П. Методы получения химических реактивов и препаратов M.: ИРЕА. 1964. № 11. С. 37.
Решетова M.Д., Борисова Н. Е. Ацетилирование N-изопропилкарбазола и получение хромтрикарбонильных комплексов его 3-ацетилпроизводного// Вестник Московского Университета. Сер.2. Химия. 1999. Т. 40, № 1. С. 43-46.
Taylor E. C., Ehrhart W. A., Kawanisi M. Formamidine acetate// Organic Syntheses. 1976. Coll. Vol. 5, P. 582; 1966, Vol. 46. P. 39.
Lokhande P. K. M., Patil D. S., Sekar N. Viscosity sensitive red shifted novel D-π-A carbazole chromophore with chlorine in π-spacer: Synthesis, photophysical properties, NLO study and DFT approach// Journal of Luminescence, 2019, Vol. 211, P. 162-175.
Verbitskiy E. V., Cheprakova E. M., Subbotina J. O., Schepochkin A. V., Slepukhin P. A., Rusinov G. L., Charushin V. N., Chupakhin O.N., Makarova N. I., Metelitsa A. V., Minkin V. I. Synthesis, spectral and electrochemical properties of pyrimidine-containing dyes as photosensitizers for dye-sensitized solar cells// Dyes and Pigments. 2014. Vol. 100, P.201-214.
Bolduc A., Dufresne S., Hanan G. S., Skene W. G. Synthesis, photophysics, and electrochemistry of thiophene–pyridine and thiophene–pyrimidine dyad comonomers// Canadian Journal of Chemistry, 2010. Vol. 88, № 3. P. 236–246.
References
Lagoja, I. M. (2005) “Pyrimidine as constituent of natural biologically active compounds”, Chemistry and Biodiversity, vol. 2, no. 1, pp. 1 50.
Vitaku, E., Smith, D. T. and Njardarson, J. T. (2014) “Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals”, Journal of Medicinal Chemistry, vol. 57, no. 24, pp. 10257 10274.
Rahman, Md L., Hegde, G., Yusoff, M.M., Malek, M. N. F. A., Srinivasa, H.T. and Kumar S. (2013), “New pyrimidine-based photo-switchable bent-core liquid crystals”, New Journal of Chemistry, vol. 37, no 8. pp. 2460 2467.
Aizawa, N., Pu, Y.-J. Sasabe, H. and Kido, J. (2012) “Solution-processable carbazole-based host materials for phosphorescent organic light-emitting devices”, Organic Electronics, vol. 13, no 11, pp. 2235 2242.
Achelle, S. and Baudequin, C. (2013) Recent advances in pyrimidine derivatives as luminescent, photovoltaic and non-linear optical materials. In: Attanasi, O.A. and Spinelli, D. (eds) Targets Heterocyclic Systems: Chemistry and Properties, Soc. Chimica Italiana, vol. 17, pp. 1 34.
Onozawa-Komatsuzaki, N., Murakami, T. N., Funaki, T. Kazaoui, S., Chikamatsu, M., Tampo, H., Wang W.-W. and Sugimoto, M. (2018) “Effect of aromatic nitrogen heterocycle treatment on the performance of perovskite solar cells”, Japanese Journal of Applied Physics. 2018. vol. 57, no. 8S3, pp. 08RE08.
Weng, J., Mei, Q., Fan, Q., Ling, Q., Tong, B. and Huang, W. (2013) “Bipolar luminescent materials containing pyrimidine terminals: synthesis, photophysical properties and a theoretical study”, RSC Advances, 2013, vol. 3, pp. 21877 21887.
Verbitskiy, E. V., Cheprakova, E. M., Slepukhin, P. A., Kodess, M. I., Ezhikova, M. A., Pervova, M.G., Rusinov, G. L., Chupakhin, O. N. and Charushin V. N. (2012) “Combination of the Suzuki-Miyaura cross-coupling and nucleophilic aromatic substitution of hydrogen (SNH) reactions as a versatile route to pyrimidines bearing thiophene fragments”, Tetrahedron, vol. 68, nos. 27 28, pp. 5445 5452.
Sasada, T., Kobayashi, F., Sakai, N. and Konakahara, T. (2009) “An unprecedented approach to 4,5-disubstituted pyrimidine derivatives by a ZnCl2-Catalyzed three-component coupling reaction”, Organic Letter, vol. 11, no. 10. pp. 2161 2164.
Hartought, H.D. (ed.) (1952) The chemistry of heterocyclic compounds, thiophene and its derivatives, New York-London: Interscience, vol.3, 533 p.
Dorofeenko, G. N., Krivun, S. V., Dulenko, V. I. and Zhdanov, Yu. A. (1965) "Perchloric acid and its compounds in organic synthesis", Russian Chemical Reviews, vol. 34, no. 2. pp. 88–104.
Granberg, K. I., Kabachnik, M. M., Sochinova, L. G. and Terenin V. I.(2001) “Prakticheskie raboty po organicheskoi khimii”, Electronic resource: http://www.chem.msu.su/rus/teaching/granberg/welcome.html (10.05.2021) (in Russ.).
Lopatinskii, V. P. and Sirotkina, N.E. (1964) 3-Acetyl-9-methylcarbazole, In: Kozlov B.G., (ed.) Methody polucheniya khimicheskikh reaktivov i preparatov. Sbornik, no.11 (B.G. Kozlov, ed.), M.: IREA. pp. 31-34 (In Russ.).
Reshetova, M.D. and Borisova, N.E. (1999) Acetylation of N-isopropylcarbazole and preparation of chromium tricarbonyl complexes of its 3-acetyl derivative", Moscow University Chemistry Bulletin, vol. 40, no. 1, pp. 43 46.
Herbivo, C., Comel, A., Kirsch, G. and Raposo M. M. M. (2009) “Synthesis of 5-aryl-5′-formyl-2, 2′-bithiophenes as new precursors for nonlinear optical (NLO) materials”, Tetrahedron, vol. 65, no. 10, pp. 2079 2086.
Baran, P.S., Shenvi, R.A. and Nguyen, S.A. (2006) “One-step synthesis of 4, 5-disubstituted pyrimidines using commercially available and inexpensive reagents”, Heterocycles,vol. 70, no. 1, pp. 581 586.
Yang, G., Jia, Q., Chen, L., Du, Z. and Wang, J. (2015) “Direct access to pyrimidines through organocatalytic inverse-electron-demand diels-alder reaction of ketones with 1,3,5-triazine”, RSC Advances, vol.5, no. 94, pp. 76759 76763.
Upare, A., Sathyanarayana, P., Kore, R., Sharma, K. and Bathula, S.R. (2018) “Catalyst free synthesis of mono- and disubstituted pyrimidines from O-acyl oximes”, Tetrahedron Letters, vol. 59, no. 25, pp. 2430 2433.
Soheilizad, M, Adiba, M. and Sajjadifarb, S. (2014) “One-pot and three-component synthesis of substituted pyrimidines catalyzed by boron sulfuric acid under solvent-free conditions”, Journal of Chemical Research, vol. 38, no. 9, pp.524 527.
Gronowitz, S. (1967) “Some substitution reactions of 2- and 3-(4-pyrimidinyl)thiophene”, Arkiv Foer Kemi, vol. 28, no. 38, p. 587.
Jadhav, S.D. and Singh, A. (2017) “Oxidative annulations involving DMSO and formamide: K2S2O8 mediated syntheses of quinolines and pyrimidines”, Orgаnic Letters, vol. 19, no. 20, pp. 5673 5676.
Antuf’eva, A.D., Maiorova, O.A., Dmitriev, M.V., Mokrushin, I.G., Galeev, A.R., Shklyaeva, E.V. and Abashev, G.G. (2018) “New π-conjugated ferrocenyl-substituted heterocyclic systems containing electron-deficient aromatic nitrogen heterocycles”, Russian Journal of Organic Chemistry, vol. 54, no. 9, pp. 1350-1357.
Antuf'eva, A.D., Akhmatzyanova, D.R., Dmitriev M.V., Shklyaeva, E.V. and Abashev, G.G. (2018) “Synthesis and structure of 2-(1H-indol-1-yl)-6-ferrocenyl-4-(2-chloroimidazo[1,2-a]pyridin-3-yl)pyrimidine”, Russian Journal of General Chemistry, vol. 88, no. 6, pp. 1103-1107.
Ivanova, E.V., Puzyk, M.V. and Balashev, K.P. (2008) “Cyclopalladated ethylenediamine complexes on the basis of 4-phenylpyrimidine and 4,6-diphenylpyrimidine”, Russian Journal of General Chemistry, vol. 78, no. 6, pp. 1236–1240.
Taylor, E. C., Ehrhart, W. A. and Kawanisi, M. (1976) “Formamidine acetate”, Organic Syntheses. 1966, vol. 46, p. 39. Electronic resource: http://orgsyn.org/demo.aspx?prep=cv5p0582 (10.05.2021).
Lokhande, P. K. M., Patil, D. S. and Sekar, N. (2019) “Viscosity sensitive red shifted novel D-π-A carbazole chromophore with chlorine in π-spacer: Synthesis, photophysical properties, NLO study and DFT approach”, Journal of Luminescence, vol. 211, no.7, pp. 162 175.
Verbitskiy, E. V., Cheprakova, E. M., Subbotina, J. O., Schepochkin, A. V., Slepukhin, P. A., Rusinov, G. L., Charushin, V. N., Chupakhin, O.N., Makarova, N. I., Metelitsa, A. V. and Minkin V. I. (2014) “Synthesis, spectral and electrochemical properties of pyrimidine-containing dyes as photosensitizers for dye-sensitized solar cells”, Dyes and Pigments, vol. 100, no.1, pp. 201 214.
Bolduc, A., Dufresne, S., Hanan, G. S. and Skene, W. G. (2010) “Synthesis, photophysics, and electrochemistry of thiophene–pyridine and thiophene–pyrimidine dyad comonomers”, Canadian Journal of Chemistry, 2010, vol. 88, no. 3, pp. 236–246.