THE CATHODIC REDUCTION OF OXYGEN AT PLATINUM ELECTRODE IN NEUTRAL SOLUTIONS IN THE REGION OF LIMITING CURRENT. EFFECT OF THE STATE OF ELECTRODE SURFACE
DOI:
https://doi.org/10.17072/2223-1838-2019-4-380-390Keywords:
oxygen electroreduction, limiting current, platinum electrode, neutral solution, impedance, NDRAbstract
The influence of Pt electrode surface pretreatment and chloride ion concentration on the polarization curves and impedance spectra for the oxygen reduction reaction in neutral solutions at and near the limiting current has been studied with special emphasis on the conditions for negative values of the real part of impedance, Z', at low frequencies. It was shown that the negative Z' values in KCl solu- tions are not typical for the anodic-cathodic pretreatment of platinum (in acidic or alkaline solution). Necessary conditions for Z' < 0 to appear are the presence of chloride ions in solution and oxidized (chemically or electrochemically) platinum surface.References
Кичигин В.И., Замалетдинов И.И., Александров В.Г. Импеданс электродов из порошковых сталей, инфильтрированных медью, в растворах NaCl // Коррозия: материалы, защита. 2014. № 2. С.1–12.
Кичигин В.И. Импедансная спектроскопия электровосстановления кислорода в нейтраль-ных растворах в области предельного диффузионного тока и близких к нему токов // Вест-ник Пермского ун-та. Химия. 2015. Вып. 3(19). С.32–49.
Тарасевич М.Р., Хрущева Е.И. Механизм и кинетика электровосстановления кислорода на металлических электродах // Кинетика сложных электрохимических реакций. М.: Наука, 1981. С.104–165.
Van Venrooij T.G.J., Koper M.T.M. Bursting and mixed-mode oscillations during the hydro-gen peroxide reduction on a platinum electrode // Electrochimica Acta. 1995. V.40. № 11. Р.1689–1696.
Gómez-Marín A.M., Rizoa R., Feliu J.M. Oxygen reduction reaction at Pt single crystals: a crit-ical overview // Catalysis Science and Technology. 2014. V. 4. P. 1685–1698.
Climent V., Feliu J.M. Surface electrochemistry with Pt single-crystal electrodes // Nanopat-terned and Nanoparticle-Modified Electrodes. Edited by R.C. Alkire, P.N. Bartlett, J. Lipkow-ski. Wiley-VCH, 2017. P. 1–57.
Conway B.E., Bai L. Determination of adsorption of opd H species in the cathodic hydrogen evolution reaction at Pt in relation to electrocatalysis // Journal of Electroanalytical Chemistry. 1986. V. 198. P. 149–175.
Mukouyama Y., Nakanishi S., Chiba T., Murakoshi K., Nakato Y. Mechanisms of two electro-chemical oscillations of different types observed for H2O2 reduction on a Pt electrode in the presence of a small amount of halide ions // Journal of Physical Chemistry B. 2001. V. 105. P. 7246–7253.
Orlik M. Self-Organization in Electrochemical Systems. I. General Principles of Self-Organization. Temporal Instabilities. Springer, 2012. 528 pp.
Briega-Martos V., Herrero E., Feliu J.M. Effect of pH and water structure on the oxygen reduc-tion reaction on platinum electrodes // Electrochimica Acta. 2017. V. 241. P. 497–509.
Forbes M., Lynn S. Oxygen reduction at an anodically activated platinum rotating disk electrode // AIChE Journal. 1975. V. 21. № 4. P. 763–769.
Millero F.J., Huang F., Graham T.B. Solubility of oxygen in some 1-1, 2-1, 1-2, and 2-2 elec-trolytes as a function of concentration at 25oC // Journal of Solution Chemistry. 2003. V. 22. № 6. Р. 473–487.