Скольжение бактерий: способ пассивного распространения без использования жгутиков и пилей (обзор)

##plugins.themes.bootstrap3.article.main##

Иван Вадимович Цыганов
Лариса Юрьевна Нестерова
Александр Георгиевич Ткаченко

Аннотация

Бактерии используют несколько типов перемещения в окружающей среде, среди которых скольжение является пассивным способом движения. Оно осуществляется за счет толкающей силы, возникающей при делении клеток, а также дополнительных факторов, изменяющих поверхностные свойства бактерий. В данном обзоре описывается механизм скольжения, виды микроорганизмов, способные к скольжению, а также отличие скользящей подвижности, от других типов движения бактерий. Кроме того, дается классификация типов скольжения, основанная на отличиях поверхностно активных веществ, используемых клетками для движения.

##plugins.themes.bootstrap3.article.details##

Как цитировать
Цыганов, И. В. ., Нестерова, Л. Ю. ., & Ткаченко, А. Г. (2021). Скольжение бактерий: способ пассивного распространения без использования жгутиков и пилей (обзор). Вестник Пермского университета. Серия Биология, (4), 263–274. https://doi.org/10.17072/1994-9952-2021-4-263-274
Раздел
Микробиология
Биографии авторов

Иван Вадимович Цыганов, Институт экологии и генетики микроорганизмов УрО РАН – филиал ПФИЦ УрО РАН

Лаборант, студент

Лариса Юрьевна Нестерова, Институт экологии и генетики микроорганизмов УрО РАН – филиал ПФИЦ УрО РАН

Канд. биол. наук, доцент, старший научный сотрудник

Александр Георгиевич Ткаченко, Институт экологии и генетики микроорганизмов УрО РАН – филиал ПФИЦ УрО РАН

Д-р мед. наук, профессор, зав. лабораторией

Библиографические ссылки

Ермилова Е.В., Залуцкая Ж.М., Лапина Т.В. Подвижность и поведение микроорганизмов. СПб.: Изд-во СПбГУ, 2004. 187 с.

Нестерова Л.Ю., Цыганов И.В., Ткаченко А.Г. Биогенные полиамины влияют на антибиотикочувствительность и поверхностные свойства клеток Mycobacterium smegmatis // Прикладная биохимия и микробиология. 2020. T. 56, № 4. C. 342–351.

Agustí G. et al. Surface spreading motility shown by a group of phylogenetically related, rapidly growing pigmented mycobacteria suggests that motility is a common property of mycobacterial species but is restricted to smooth colonies // Journal of Bacteriology. 2008. Vol. 190, № 20. Р. 6894–6902.

Alberti L, Harshey R.M. Differentiation of Serratia marcescens 274 into swimmer and swarmer cells // Journal of Bacteriology. 1990. Vol. 172, № 8. Р. 4322–4328.

Balagam R. et al. Myxococcus xanthus gliding motors are elastically coupled to the substrate as predicted by the focal adhesion model of gliding motility // PLOS Computational Biology. 2014. Vol. 10, № 5. Р. e1003619.

Blakemore R.P. Magnetotactic bacteria // Annual Review of Microbiology. 1982. № 36. Р. 217–238.

Bourret R.B., Stock A.M. Molecular information processing: lessons from bacterial chemotaxis // Journal of Biological Chemistry. 2002. Vol. 277, №. 12. Р. 9625–9658.

Daffé M., Draper P. The envelope layers of mycobacteria with reference to their pathogenicity // Advances in microbial physiology. 1997. Vol. 39. Р. 131–203.

Eberl L., Molin S., Givskov M. Surface motility of Serratia liquefaciens MG1 // Journal of Bacteriology. 1999. Vol. 181, № 6. Р. 1703–1712.

Fall R., Kearns D.B., Nguyen T. A defined medium to investigate sliding motility in a Bacillus subtilis flagella-less mutant // BMC Microbiology. 2006. Vol. 6. Р. 31.

Faure L.M. et al. The mechanism of force transmission at bacterial focal adhesion complexes // Nature. 2016. Vol. 539, № 7630. Р. 530–535.

Fournier J. et al. Mechanism of infection thread elongation in root hairs of Medicago truncatula and dy-namic interplay with associated rhizobial colonization // Plant Physiology. 2008. Vol. 148, № 4. Р. 1985–1995.

Fraser G.M., Hughes C. Swarming motility // Current Opinion in Microbiology. 1999. Vol. 2, № 6. Р. 630–635.

Gage D.J., Margolin W. Hanging by a thread: invasion of legume plants by rhizobia // Current Opinion in Microbiology. 2000. Vol. 3, № 6. Р. 613–617.

Grau R.R.et al. A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of Bacillus subtilis // mBio. 2015. Vol. 6, № 4. Р. e00581.

Gupta K.R., Kasetty S., Chatterji D. Novel functions of (p)ppGpp and Cyclic di-GMP in mycobacterial physiology revealed by phenotype microarray analysis of wild-type and isogenic strains of Mycobacterium smegmatis // Applied and Environmental Microbiology. 2015. Vol. 81, № 7. Р. 2571–2578.

Gupta K.R. et al. Regulation of Growth, Cell Shape, Cell Division, and Gene Expression by Second Mes-sengers (p)ppGpp and Cyclic Di-GMP in Mycobacterium smegmatis // Journal of Bacteriology. 2016. Vol. 198, № 9. Р. 1414–1422.

Harshey R.M. Bacterial motility on a surface: many ways to a common goal // Annual Review of Micro-biology. 2003. № 57. Р. 249–273.

Harshey R.M., Partridge J.D. Shelter in a Swarm // Journal of Molecular Biology. 2015. Vol. 427, № 23. Р. 3683–3694.

Henrichsen J. Bacterial surface translocation: a survey and a classification // Bacteriological Reviews. 1972. Vol. 36, № 4. Р. 478–503.

Hölscher T., Kovács Á.T. Sliding on the surface: bacterial spreading without an active motor // Environ-mental Microbiology. 2017. Vol. 19, № 7. Р. 2537–2545.

Hong Y. et al. Cyclic di-GMP mediates Mycobacterium tuberculosis dormancy and pathogenicity // Tu-berculosis (Edinburgh). 2013. Vol. 93. P. 625–634.

Jakobczak B. et al. Contact and Protein Transfer-Dependent Stimulation of Assembly of the Gliding Mo-tility Machinery in Myxococcus Xanthus // PLOS Genetics. 2015. Vol. 11, № 7. Р. e1005341.

Jiang Z.Y., Gest H., Bauer C.E. Chemosensory and photosensory perception in purple photosynthetic bacteria utilize common signal transduction components // Journal of Bacteriology. 1997. Vol. 179, № 18. Р. 5720–5727.

Kaiser D. Coupling cell movement to multicellular development in myxobacteria // Nature Reviews Mi-crobiology. 2003. Vol. 1, № 1. Р. 45–54.

Kearns D.B. A field guide to bacterial swarming motility // Nature Reviews Microbiology. 2010. Vol. 8, № 9. Р. 634–644.

Kinsinger R.F., Shirk M.C., Fall R. Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion // Journal of Bacteriology. 2003. Vol. 185, №. 18. Р. 5627–5631.

Kinsinger R.F. et al. Genetic requirements for potassium ion-dependent colony spreading in Bacillus sub-tilis // Journal of Bacteriology. 2005. Vol. 187, № 24. Р. 8462–8469.

Khayatan B., Meeks J.C., Risser D.D. Evidence that a modified type IV pilus-like system powers gliding motility and polysaccharide secretion in filamentous cyanobacteria // Molecular Microbiology. 2015. Vol. 98, № 6. P. 1021–1036.

Kobayashi K., Kanesaki Y., Yoshikawa H. Genetic Analysis of Collective Motility of Paenibacillus sp. NAIST15-1 // PLOS Genetics. 2016. Vol. 12, № 10. Р. e1006387.

Kuchma S.L. et al. BifA, a cyclic-Di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA1 // Journal of Bacteriology. 2007. Vol. 189, № 2. Р. 8165–8178.

Li W., He Z.G. LtmA, a novel cyclic di-GMP-responsive activator, broadly regulates the expression of lipid transport and metabolism genes in Mycobacterium smegmatis // Nucleic Acids Research. 2012. Vol. 40, № 22. Р. 11292–11307.

Liu T.Y. et al. Mab_3083c Is a Homologue of RNase J and Plays a Role in Colony Morphotype, Aggre-gation, and Sliding Motility of Mycobacterium abscessus // Microorganisms. 2021. Vol. 9, № 4. Р. 676.

Magariyama Y., Sugiyama S., Kudo S. Bacterial swimming speed and rotation rate of bundled flagella // FEMS Microbiology Letters. 2001. Vol. 199, № 1. Р. 125–129.

Magariyama Y. et al. Simultaneous measurement of bacterial flagellar rotation rate and swimming speed // Biophysical Journal. 1995. Vol. 69, № 5. Р.2154–2162.

Manson M.D. Bacterial motility and chemotaxis // Advances in Microbial Physiology. 1992. Vol. 33. Р. 277–346.

Martínez A., Torello S., Kolter R. Sliding motility in mycobacteria // Journal of Bacteriology. 1999. Vol. 181, № 23. Р. 7331–7338.

Mathew R. et al. Deletion of the rel gene in Mycobacterium smegmatis reduces its stationary phase sur-vival without altering the cell-surface associated properties // Current Science. 2004. Vol. 86. P. 149–153.

Mattick J.S. Type IV pili and twitching motility // Annual Review of Microbiology. 2002. Vol. 56. Р. 289–314.

Matsuyama T., Bhasin A., Harshey R.M. Mutational analysis of flagellum-independent surface spreading of Serratia marcescens 274 on a low-agar medium // Journal of Bacteriology. 1995. Vol. 177, № 4. Р. 9879–9891.

Matsuyama T. et al. A novel extracellular cyclic lipopeptide which promotes flagellum-dependent and -independent spreading growth of Serratia marcescens // Journal of Bacteriology. 1992. Vol. 174, № 6. Р. 1769–1776.

Merritt J.H. et al. SadC reciprocally influences biofilm formation and swarming motility via modulation of exopolysaccharide production and flagellar function // Journal of Bacteriology. 2007. Vol. 189, № 22. Р. 8154–8164.

Merz A.J., So M., Sheetz M.P. Pilus retraction powers bacterial twitching motility // Nature. 2000. Vol. 407, № 6800. Р. 98–102.

Mignot T. et al. Evidence that focal adhesion complexes power bacterial gliding motility // Science. 2007. Vol. 315, № 5813. Р. 853–856.

Müller F.D., Schüler D., Pfeiffer D. A Compass To Boost Navigation: Cell Biology of Bacterial Magne-totaxis // Journal of Bacteriology. 2020. Vol. 202, № 21. Р. e00398-20.

Murray T.S., Kazmierczak B.I. Pseudomonas aeruginosa exhibits sliding motility in the absence of type IV pili and flagella // Journal of Bacteriology. 2008. Vol. 190, № 8. P. 2700–2708.

Nan B. Bacterial Gliding Motility: Rolling Out a Consensus Model // Current Biology. 2017. Vol. 27, № 4. Р. R154–R156.

Nan B. et al. Myxobacteria gliding motility requires cytoskeleton rotation powered by proton motive force // Proceedings of the National Academy of Sciences USA. 2011. Vol. 108, № 6. Р. 2498–2503.

Nan B. et al. Flagella stator homologs function as motors for myxobacterial gliding motility by moving in helical trajectories // Proceedings of the National Academy of Sciences USA. 2013. Vol. 110, № 16. Р. E1508–1513.

Nan B. et al. The polarity of myxobacterial gliding is regulated by direct interactions between the gliding motors and the Ras homolog MglA // Proceedings of the National Academy of Sciences USA. 2015. Vol. 112, № 2. Р. E186–193.

Nan B., Zusman D.R. Novel mechanisms power bacterial gliding motility // Molecular Microbiology. 2016. Vol. 101, № 2. Р. 186–193.

Nogales J. et al. ExpR is not required for swarming but promotes sliding in Sinorhizobium meliloti // Journal of Bacteriology. 2012. Vol. 194, № 8. Р. 2027–2035.

Nogales J. et al. FleQ coordinates flagellum-dependent and -independent motilities in Pseudomonas sy-ringae pv. tomato DC3000 // Applied and Environmental Microbiology. 2015. Vol. 81, № 21. Р. 7533–7545.

Park S.Y., Pontes M.H., Groisman E.A. Flagella-independent surface motility in Salmonella enterica se-rovar Typhimurium // Proceedings of the National Academy of Sciences USA. 2015. Vol. 112, № 6. Р.1850–1855.

Pollitt E.J.G., Diggle S.P. Defining motility in the Staphylococci // Cellular and Molecular Life Sciences. 2017. Vol. 74, № 16. Р. 2943–2958.

Porter S.L., Armitage J.P. Phosphotransfer in Rhodobacter sphaeroides chemotaxis // Journal of Molecu-lar Biology. 2002. Vol. 324, № 1. Р. 35–45.

Recht J. et al. Genetic analysis of sliding motility in Mycobacterium smegmatis // Journal of Bacteriology. 2000. Vol. 182, № 15. Р. 4348–4351.

Schorey J.S., Sweet L. The mycobacterial glycopeptidolipids: structure, function, and their role in patho-genesis // Glycobiology. 2008. Vol. 18, № 11. Р. 832–841.

Schuergers N., Mullineaux C.W., Wilde A. Cyanobacteria in motion // Current Opinion in Plant Biology. 2017. Vol. 37. Р. 109–115.

Seminara A. et al. Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix // Proceedings of the National Academy of Sciences USA. 2012. Vol. 109, № 4. Р. 1116–1121.

Semmler A.B., Whitchurch C.B., Mattick J.S. A re-examination of twitching motility in Pseudomonas aeruginosa // Microbiology. 1999. Vol. 145. Р. 2863–2873.

Stewart C.R., Burnside D.M., Cianciotto N.P. The surfactant of Legionella pneumophila Is secreted in a TolC-dependent manner and is antagonistic toward other Legionella species // Journal of Bacteriology. 2011. Vol. 193, № 21. Р. 5971–5984.

Stewart C.R., Rossier O., Cianciotto N.P. Surface translocation by Legionella pneumophila: a form of sliding motility that is dependent upon type II protein secretion // Journal of Bacteriology. 2009. Vol. 191, № 5. Р. 1537–1546.

Sun M. et al. Motor-driven intracellular transport powers bacterial gliding motility // Proceedings of the National Academy of Sciences USA. 2011. Vol. 108, № 18. Р. 7559–7564.

Turnbull L., Whitchurch C.B. Motility assay: twitching motility // Methods in Molecular Biology. 2014. Vol. 1149. Р. 73–86.

van Gestel J., Vlamakis H., Kolter R. From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate // PLOS Biology. 2015. Vol. 13, № 4. Р. e1002141.

Verstraeten N. et al. Living on a surface: swarming and biofilm formation // Trends in Microbiology. 2008. Vol. 16, № 10. Р. 496–506.

Vlamakis H. et al. Sticking together: building a biofilm the Bacillus subtilis way // Nature Reviews Mi-crobiology. 2013. Vol. 11, № 3. Р. 157–168.

Wall D., Kaiser D. Type IV pili and cell motility // Molecular Microbiology. 1999. Vol. 32, № 1. Р. 1–10.

Wolgemuth C. et al. How myxobacteria glide // Current Biology. 2002. Vol. 12, № 5. Р. 369–377.

Wong-Ng J., Celani A., Vergassola M. Exploring the function of bacterial chemotaxis // Current Opinion in Microbiology. 2018. Vol. 45. Р. 16–21.

Wu S.S., Wu J., Kaiser D. The Myxococcus xanthus pilT locus is required for social gliding motility al-though pili are still produced // Molecular Microbiology. 1997. Vol. 23, № 1. Р. 109–121

Наиболее читаемые статьи этого автора (авторов)