Sliding bacteria: a method of passive spread without using of flagella and pili (review)

Main Article Content

Ivan V. Tsyganov
Larisa Yu. Nesterova
Alexander G. Tkachenko

Abstract

To move in the environment, bacteria use several types of translocation. Sliding is a passive method of movement, which is carried out due to the expansive force, which increases during cell division. This review describes the sliding mechanism, different types of sliding mobility, from other types of bacteria. In addition, a classification of sliding types is used, surface active substances used by cells to slide. However, it is worth noting that bacterial slide mechanisms need further investigation.

Article Details

How to Cite
Tsyganov И. В. ., Nesterova Л. Ю. ., & Tkachenko А. Г. (2021). Sliding bacteria: a method of passive spread without using of flagella and pili (review). Bulletin of Perm University. Biology, (4), 263–274. https://doi.org/10.17072/1994-9952-2021-4-263-274
Section
Микробиология
Author Biographies

Ivan V. Tsyganov, Institute of Ecology and Genetics of Microorganisms, Ural Branch of RAS

Laboratory assistant, student

Larisa Yu. Nesterova, Institute of Ecology and Genetics of Microorganisms, Ural Branch of RAS

Candidate of biology, associate professor, senior scientist

Alexander G. Tkachenko, Institute of Ecology and Genetics of Microorganisms, Ural Branch of RAS

Doctor of medicine, professor, head of the laboratory

References

Ермилова Е.В., Залуцкая Ж.М., Лапина Т.В. Подвижность и поведение микроорганизмов. СПб.: Изд-во СПбГУ, 2004. 187 с.

Нестерова Л.Ю., Цыганов И.В., Ткаченко А.Г. Биогенные полиамины влияют на антибиотикочувствительность и поверхностные свойства клеток Mycobacterium smegmatis // Прикладная биохимия и микробиология. 2020. T. 56, № 4. C. 342–351.

Agustí G. et al. Surface spreading motility shown by a group of phylogenetically related, rapidly growing pigmented mycobacteria suggests that motility is a common property of mycobacterial species but is restricted to smooth colonies // Journal of Bacteriology. 2008. Vol. 190, № 20. Р. 6894–6902.

Alberti L, Harshey R.M. Differentiation of Serratia marcescens 274 into swimmer and swarmer cells // Journal of Bacteriology. 1990. Vol. 172, № 8. Р. 4322–4328.

Balagam R. et al. Myxococcus xanthus gliding motors are elastically coupled to the substrate as predicted by the focal adhesion model of gliding motility // PLOS Computational Biology. 2014. Vol. 10, № 5. Р. e1003619.

Blakemore R.P. Magnetotactic bacteria // Annual Review of Microbiology. 1982. № 36. Р. 217–238.

Bourret R.B., Stock A.M. Molecular information processing: lessons from bacterial chemotaxis // Journal of Biological Chemistry. 2002. Vol. 277, №. 12. Р. 9625–9658.

Daffé M., Draper P. The envelope layers of mycobacteria with reference to their pathogenicity // Advances in microbial physiology. 1997. Vol. 39. Р. 131–203.

Eberl L., Molin S., Givskov M. Surface motility of Serratia liquefaciens MG1 // Journal of Bacteriology. 1999. Vol. 181, № 6. Р. 1703–1712.

Fall R., Kearns D.B., Nguyen T. A defined medium to investigate sliding motility in a Bacillus subtilis flagella-less mutant // BMC Microbiology. 2006. Vol. 6. Р. 31.

Faure L.M. et al. The mechanism of force transmission at bacterial focal adhesion complexes // Nature. 2016. Vol. 539, № 7630. Р. 530–535.

Fournier J. et al. Mechanism of infection thread elongation in root hairs of Medicago truncatula and dy-namic interplay with associated rhizobial colonization // Plant Physiology. 2008. Vol. 148, № 4. Р. 1985–1995.

Fraser G.M., Hughes C. Swarming motility // Current Opinion in Microbiology. 1999. Vol. 2, № 6. Р. 630–635.

Gage D.J., Margolin W. Hanging by a thread: invasion of legume plants by rhizobia // Current Opinion in Microbiology. 2000. Vol. 3, № 6. Р. 613–617.

Grau R.R.et al. A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of Bacillus subtilis // mBio. 2015. Vol. 6, № 4. Р. e00581.

Gupta K.R., Kasetty S., Chatterji D. Novel functions of (p)ppGpp and Cyclic di-GMP in mycobacterial physiology revealed by phenotype microarray analysis of wild-type and isogenic strains of Mycobacterium smegmatis // Applied and Environmental Microbiology. 2015. Vol. 81, № 7. Р. 2571–2578.

Gupta K.R. et al. Regulation of Growth, Cell Shape, Cell Division, and Gene Expression by Second Mes-sengers (p)ppGpp and Cyclic Di-GMP in Mycobacterium smegmatis // Journal of Bacteriology. 2016. Vol. 198, № 9. Р. 1414–1422.

Harshey R.M. Bacterial motility on a surface: many ways to a common goal // Annual Review of Micro-biology. 2003. № 57. Р. 249–273.

Harshey R.M., Partridge J.D. Shelter in a Swarm // Journal of Molecular Biology. 2015. Vol. 427, № 23. Р. 3683–3694.

Henrichsen J. Bacterial surface translocation: a survey and a classification // Bacteriological Reviews. 1972. Vol. 36, № 4. Р. 478–503.

Hölscher T., Kovács Á.T. Sliding on the surface: bacterial spreading without an active motor // Environ-mental Microbiology. 2017. Vol. 19, № 7. Р. 2537–2545.

Hong Y. et al. Cyclic di-GMP mediates Mycobacterium tuberculosis dormancy and pathogenicity // Tu-berculosis (Edinburgh). 2013. Vol. 93. P. 625–634.

Jakobczak B. et al. Contact and Protein Transfer-Dependent Stimulation of Assembly of the Gliding Mo-tility Machinery in Myxococcus Xanthus // PLOS Genetics. 2015. Vol. 11, № 7. Р. e1005341.

Jiang Z.Y., Gest H., Bauer C.E. Chemosensory and photosensory perception in purple photosynthetic bacteria utilize common signal transduction components // Journal of Bacteriology. 1997. Vol. 179, № 18. Р. 5720–5727.

Kaiser D. Coupling cell movement to multicellular development in myxobacteria // Nature Reviews Mi-crobiology. 2003. Vol. 1, № 1. Р. 45–54.

Kearns D.B. A field guide to bacterial swarming motility // Nature Reviews Microbiology. 2010. Vol. 8, № 9. Р. 634–644.

Kinsinger R.F., Shirk M.C., Fall R. Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion // Journal of Bacteriology. 2003. Vol. 185, №. 18. Р. 5627–5631.

Kinsinger R.F. et al. Genetic requirements for potassium ion-dependent colony spreading in Bacillus sub-tilis // Journal of Bacteriology. 2005. Vol. 187, № 24. Р. 8462–8469.

Khayatan B., Meeks J.C., Risser D.D. Evidence that a modified type IV pilus-like system powers gliding motility and polysaccharide secretion in filamentous cyanobacteria // Molecular Microbiology. 2015. Vol. 98, № 6. P. 1021–1036.

Kobayashi K., Kanesaki Y., Yoshikawa H. Genetic Analysis of Collective Motility of Paenibacillus sp. NAIST15-1 // PLOS Genetics. 2016. Vol. 12, № 10. Р. e1006387.

Kuchma S.L. et al. BifA, a cyclic-Di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA1 // Journal of Bacteriology. 2007. Vol. 189, № 2. Р. 8165–8178.

Li W., He Z.G. LtmA, a novel cyclic di-GMP-responsive activator, broadly regulates the expression of lipid transport and metabolism genes in Mycobacterium smegmatis // Nucleic Acids Research. 2012. Vol. 40, № 22. Р. 11292–11307.

Liu T.Y. et al. Mab_3083c Is a Homologue of RNase J and Plays a Role in Colony Morphotype, Aggre-gation, and Sliding Motility of Mycobacterium abscessus // Microorganisms. 2021. Vol. 9, № 4. Р. 676.

Magariyama Y., Sugiyama S., Kudo S. Bacterial swimming speed and rotation rate of bundled flagella // FEMS Microbiology Letters. 2001. Vol. 199, № 1. Р. 125–129.

Magariyama Y. et al. Simultaneous measurement of bacterial flagellar rotation rate and swimming speed // Biophysical Journal. 1995. Vol. 69, № 5. Р.2154–2162.

Manson M.D. Bacterial motility and chemotaxis // Advances in Microbial Physiology. 1992. Vol. 33. Р. 277–346.

Martínez A., Torello S., Kolter R. Sliding motility in mycobacteria // Journal of Bacteriology. 1999. Vol. 181, № 23. Р. 7331–7338.

Mathew R. et al. Deletion of the rel gene in Mycobacterium smegmatis reduces its stationary phase sur-vival without altering the cell-surface associated properties // Current Science. 2004. Vol. 86. P. 149–153.

Mattick J.S. Type IV pili and twitching motility // Annual Review of Microbiology. 2002. Vol. 56. Р. 289–314.

Matsuyama T., Bhasin A., Harshey R.M. Mutational analysis of flagellum-independent surface spreading of Serratia marcescens 274 on a low-agar medium // Journal of Bacteriology. 1995. Vol. 177, № 4. Р. 9879–9891.

Matsuyama T. et al. A novel extracellular cyclic lipopeptide which promotes flagellum-dependent and -independent spreading growth of Serratia marcescens // Journal of Bacteriology. 1992. Vol. 174, № 6. Р. 1769–1776.

Merritt J.H. et al. SadC reciprocally influences biofilm formation and swarming motility via modulation of exopolysaccharide production and flagellar function // Journal of Bacteriology. 2007. Vol. 189, № 22. Р. 8154–8164.

Merz A.J., So M., Sheetz M.P. Pilus retraction powers bacterial twitching motility // Nature. 2000. Vol. 407, № 6800. Р. 98–102.

Mignot T. et al. Evidence that focal adhesion complexes power bacterial gliding motility // Science. 2007. Vol. 315, № 5813. Р. 853–856.

Müller F.D., Schüler D., Pfeiffer D. A Compass To Boost Navigation: Cell Biology of Bacterial Magne-totaxis // Journal of Bacteriology. 2020. Vol. 202, № 21. Р. e00398-20.

Murray T.S., Kazmierczak B.I. Pseudomonas aeruginosa exhibits sliding motility in the absence of type IV pili and flagella // Journal of Bacteriology. 2008. Vol. 190, № 8. P. 2700–2708.

Nan B. Bacterial Gliding Motility: Rolling Out a Consensus Model // Current Biology. 2017. Vol. 27, № 4. Р. R154–R156.

Nan B. et al. Myxobacteria gliding motility requires cytoskeleton rotation powered by proton motive force // Proceedings of the National Academy of Sciences USA. 2011. Vol. 108, № 6. Р. 2498–2503.

Nan B. et al. Flagella stator homologs function as motors for myxobacterial gliding motility by moving in helical trajectories // Proceedings of the National Academy of Sciences USA. 2013. Vol. 110, № 16. Р. E1508–1513.

Nan B. et al. The polarity of myxobacterial gliding is regulated by direct interactions between the gliding motors and the Ras homolog MglA // Proceedings of the National Academy of Sciences USA. 2015. Vol. 112, № 2. Р. E186–193.

Nan B., Zusman D.R. Novel mechanisms power bacterial gliding motility // Molecular Microbiology. 2016. Vol. 101, № 2. Р. 186–193.

Nogales J. et al. ExpR is not required for swarming but promotes sliding in Sinorhizobium meliloti // Journal of Bacteriology. 2012. Vol. 194, № 8. Р. 2027–2035.

Nogales J. et al. FleQ coordinates flagellum-dependent and -independent motilities in Pseudomonas sy-ringae pv. tomato DC3000 // Applied and Environmental Microbiology. 2015. Vol. 81, № 21. Р. 7533–7545.

Park S.Y., Pontes M.H., Groisman E.A. Flagella-independent surface motility in Salmonella enterica se-rovar Typhimurium // Proceedings of the National Academy of Sciences USA. 2015. Vol. 112, № 6. Р.1850–1855.

Pollitt E.J.G., Diggle S.P. Defining motility in the Staphylococci // Cellular and Molecular Life Sciences. 2017. Vol. 74, № 16. Р. 2943–2958.

Porter S.L., Armitage J.P. Phosphotransfer in Rhodobacter sphaeroides chemotaxis // Journal of Molecu-lar Biology. 2002. Vol. 324, № 1. Р. 35–45.

Recht J. et al. Genetic analysis of sliding motility in Mycobacterium smegmatis // Journal of Bacteriology. 2000. Vol. 182, № 15. Р. 4348–4351.

Schorey J.S., Sweet L. The mycobacterial glycopeptidolipids: structure, function, and their role in patho-genesis // Glycobiology. 2008. Vol. 18, № 11. Р. 832–841.

Schuergers N., Mullineaux C.W., Wilde A. Cyanobacteria in motion // Current Opinion in Plant Biology. 2017. Vol. 37. Р. 109–115.

Seminara A. et al. Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix // Proceedings of the National Academy of Sciences USA. 2012. Vol. 109, № 4. Р. 1116–1121.

Semmler A.B., Whitchurch C.B., Mattick J.S. A re-examination of twitching motility in Pseudomonas aeruginosa // Microbiology. 1999. Vol. 145. Р. 2863–2873.

Stewart C.R., Burnside D.M., Cianciotto N.P. The surfactant of Legionella pneumophila Is secreted in a TolC-dependent manner and is antagonistic toward other Legionella species // Journal of Bacteriology. 2011. Vol. 193, № 21. Р. 5971–5984.

Stewart C.R., Rossier O., Cianciotto N.P. Surface translocation by Legionella pneumophila: a form of sliding motility that is dependent upon type II protein secretion // Journal of Bacteriology. 2009. Vol. 191, № 5. Р. 1537–1546.

Sun M. et al. Motor-driven intracellular transport powers bacterial gliding motility // Proceedings of the National Academy of Sciences USA. 2011. Vol. 108, № 18. Р. 7559–7564.

Turnbull L., Whitchurch C.B. Motility assay: twitching motility // Methods in Molecular Biology. 2014. Vol. 1149. Р. 73–86.

van Gestel J., Vlamakis H., Kolter R. From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate // PLOS Biology. 2015. Vol. 13, № 4. Р. e1002141.

Verstraeten N. et al. Living on a surface: swarming and biofilm formation // Trends in Microbiology. 2008. Vol. 16, № 10. Р. 496–506.

Vlamakis H. et al. Sticking together: building a biofilm the Bacillus subtilis way // Nature Reviews Mi-crobiology. 2013. Vol. 11, № 3. Р. 157–168.

Wall D., Kaiser D. Type IV pili and cell motility // Molecular Microbiology. 1999. Vol. 32, № 1. Р. 1–10.

Wolgemuth C. et al. How myxobacteria glide // Current Biology. 2002. Vol. 12, № 5. Р. 369–377.

Wong-Ng J., Celani A., Vergassola M. Exploring the function of bacterial chemotaxis // Current Opinion in Microbiology. 2018. Vol. 45. Р. 16–21.

Wu S.S., Wu J., Kaiser D. The Myxococcus xanthus pilT locus is required for social gliding motility al-though pili are still produced // Molecular Microbiology. 1997. Vol. 23, № 1. Р. 109–121