Molecular genetic characteristics of pathogenicity factors of genus Acinetobacter representatives isolated in medical organizations of Rostov-on-Don

Main Article Content

Elena N. Gudueva
Victoria V. Agafonova
Natalia E. Gayevskaya
Valentina A. Lychman
Alexandr Y. Karnayxov
Olga S. Chemisova

Abstract

The most common causative agent of nosocomial infections is a representative of genus Acinetobacter, A. baumannii. The mortality rate for nosocomial pneumonia reaches 35%. An important role in pathogenicity is played by factors that are active at all stages of the infectious process, determining tissue damage macroorganism and the survival of the microorganism. Despite the fact that A. baumannii has a higher pathogenicity for humans than other representatives of the genus, representatives of other species (A. calcoaceticus and A. junii) are also isolated from sputum samples of patients with community-acquired pneumonia (CAP). The aim of the study was to identify genes encoding pathogenicity factors of strains isolated from sputum samples of patients with СAP in medical organizations (MO) in Rostov-on-Don, as well as from swabs from objects of the external environment in the departments of medical organizations. The species identity of the strains was confirmed by the mass spectrometric method (MALDI-TOF). Genome-wide sequencing of genus Acinetobacter strains was performed on the Illumina MiSeq platform using the Nextera DNA Library Preparation Kit. The search for genes of pathogenicity factors of the studied strains was carried out using the Fragment Extractor program. The NCBI database was used as a database of nucleotide sequences. Among the isolated strains of genus Acinetobacter, 91.8% were A. baumannii, in solitary cases, A. calcoaceticus and A. junii were isolated.  It was determined that the studied strains possessed a wide range of genes for pathogenicity factors, which is similar both in clinical strains and in strains isolated from swabs from objects of the external environment in medical facilities, which apparently indicates their relationship.

Article Details

How to Cite
Gudueva Е. Н., Agafonova В. В. ., Gayevskaya Н. Е., Lychman В. А., Karnayxov А. Ю., & Chemisova О. С. . (2025). Molecular genetic characteristics of pathogenicity factors of genus Acinetobacter representatives isolated in medical organizations of Rostov-on-Don. Bulletin of Perm University. Biology, (2), 185–195. https://doi.org/10.17072/1994-9952-2025-2-185-195
Section
Микробиология
Author Biographies

Victoria V. Agafonova, Rostov-on-Don Antiplague Scientific Research Institute of Rospotrebnadzor, Rostov-on-Don, Russia

candidate of biology, Acting Head of the laboratory "Collection of pathogenic microorganisms"

Natalia E. Gayevskaya, Rostov-on-Don Antiplague Scientific Research Institute of Rospotrebnadzor, Rostov-on-Don, Russia

candidate of medicine, Acting Director Institute

Valentina A. Lychman, Rostov-on-Don Antiplague Scientific Research Institute of Rospotrebnadzor, Rostov-on-Don, Russia

laboratory assistant of the laboratory "Collection of pathogenic Microorganisms»

Alexandr Y. Karnayxov, Rostov-on-Don Antiplague Scientific Research Institute of Rospotrebnadzor, Rostov-on-Don, Russia

Laboratory assistant of the laboratory "Collection of pathogenic Microorganisms»

Olga S. Chemisova, Don State Technical University, DSTU, Rostov-on-Don, Russia

candidate of biology, Associate Professor of the Department of Bioengineering

References

Гостев В.В., Сидоренко С.В. Бактериальные биопленки и инфекции // Журнал инфектологии. 2010. Т. 2, № 3. С. 14−15. DOI: 10.22625/2072-6732-2010-2-3-4-15. EDN: MVXTDV.

Зуева Л.П., Гончаров А.Е. Молекулярная эпидемиология возбудителей инфекционных заболева-ний: контуры будущего // Медицина в Кузбассе. 2013. Т. 12, № 2. С. 9−13. EDN: RDULTJ.

Лавриненко А.В. Вирулентный Аcinetobacter baumannii // Медицина и экология. 2019. № 3. С. 21−25.

Мартюшева И.Б. и др. Масс-спектрометрическое определение паттернов плёнкообразования у культур − возбудителей инфекций, связанных с оказанием медицинской помощи // Контроль и профилак-тика инфекций, связанных с оказанием медицинской помощи (ИСМП-2023): сб. тез. М., 2023. С. 58−59. EDN: SAVXEL.

Павлович Н.В. и др. Сравнительный анализ структуры возбудителей внебольничных и внутри-больничных пневмоний у пациентов в медицинских организациях Ростовской, Тюменской областей и Хабаровского края в современный период пандемии новой коронавирусной инфекции // Проблемы особо опасных инфекций. 2023. № 3. С. 108–117. DOI: 10.21055/0370-1069-2023-3-108-117. EDN: WLRDUY.

Попова А.Ю. и др. Этиология внебольничных пневмоний в период эпидемического распростране-ния Covid-19 и оценка риска возникновения пневмоний, связанных с оказанием медицинской помощи // Здоровье населения и среда обитания. 2021. Т. 29, № 7. С. 67–75. DOI: 10.35627/2219-5238/2021-29-7-67-75. EDN: AOPKKW.

Садеева З.З. и др. Acinetobacter baumannii при инфекциях кровотока и центральной нервной систе-мы у детей в отделениях реанимации и интенсивной терапии: молекулярно-генетическая характеристика и клиническая значимость // Инфекция и иммунитет. 2023. Т. 13, № 2. C. 289–301. DOI: 10.15789/2220-7619-ABI-209. EDN: RJKJKI.

Скурихина Ю.Е. и др. Молекулярно-эпидемиологический анализ штаммов Acinetobacter baumannii, выделенных у пациентов с ожоговой травмой // Современные технологии в медицине. 2016. Т. 8, № 1. С. 134–139. DOI: 10.17691/stm2016.8.1.18. EDN: VRDFHL.

Чеботарь И.В. и др. Acinetobacter: микробиологические, патогенетические и резистентные свойства // Вестник РАМН. 2014. № 9–10. С. 39–50. DOI: 10.15690/vramn.v69i9-10.1130. EDN: TBQIZZ.

Шмакова М.А. Бактерии рода Acinetobacter как внутрибольничные патогены: эпидемиологиче-ские особенности // Фундаментальная и клиническая медицина. 2019. Т. 4, № 1. С. 66−72. DOI: 10.23946/2500-0764- 2019-4-1-66-72. EDN: IIZPHG.

Behrens-Kneip S. The role of SurA factor in outer membrane protein transport and virulence // Interna-tional Journal of Medical Microbiology. 2010. Vol. 300(7). P. 421–428. PMID: 20447864. DOI: 10.1016/j.ijmm.2010.04.012.

Ching C. et al. RecA levels modulate biofilm development in Acinetobacter baumannii // Molecular Mi-crobiology. 2023. Vol. 121(2). P. 196–212. DOI: 10.1111/mmi.15188. EDN: LXZXGT.

de Breij A. et al. CsuA/BABCDE-dependent pili are not involved in the adherence of Acinetobacter baumannii ATCC 19606(T) to human airway epithelial cells and their inflammatory response // Res. Microbiol. 2009. Vol. 160 (3). P. 213−218. DOI: 10.1016/j.resmic.2009.01.002.

El Edel R.H. et al. Genetic expression of AdeR and AdeS genes in multidrug resistant Acinetobacter spp., isolated from patients in Menoufia University Hospitals // Micr. Inf. Dis. 2021. Article In Press. P. 10. DOI: 10.21608/mid.2021.61457.1116.

Elhosseiny N.M. et al. Acinetobacter baumannii universal stress protein A plays a pivotal role in stress re-sponse and is essential for pneumonia and sepsis pathogenesis // Int. J. Med. Microbiol. 2015. Vol. 305 (1). P. 114−123. DOI: 10.1016/j.ijmm.2014.11.008.

Filloux A. The underlying mechanisms of type II protein secretion // Biochim. Biophys. Acta (BBA) – Mol. Cell Res. 2004. Vol. 1694(1–3). P. 163−179. DOI: 10.1016/j.bbamcr.2004.05.003.

Kim S.Y. et al. The sensor kinase BfmS controls production of outer membrane vesicles in Acinetobacter baumannii // BMC Microbiol. 2019. Vol. 19(1). Art. 301. DOI: 10.1186/s12866-019-1679-0. EDN: NLIYBA.

Koenigs A., Zipfel P.F., Kraiczy P. Translation elongation factor Tuf of Acinetobacter baumannii is a plasminogen-binding protein // PLoS ONE. 2015. Vol. 10(9). Art. 22. DOI: 10.1371/journal.pone.0134418.

Krishnan S., Prasadarao N.V. Outer membrane protein A and OprF: versatile roles in Gram-negative bac-terial infections // FEBS Journal. 2012. Vol. 279(6). P. 919−931. DOI: 10.1111/j.1742-4658.2012.08482.x.

Lee C-R. et al. Biology of Acinetobacter baumannii: Pathogenesis, antibiotic resistance mechanisms, and prospective treatment options // Front. Cell. Infect. Microbiol. 2017. Vol. 7. Art. 55. DOI: 10.3389/fcimb.2017.00055. EDN: YGTDBQ.

Li H., Jogl G. Crystal structure of the zinc-binding transport protein ZnuA from Escherichia coli reveals an unexpected variation in metal coordination // J. Mol. Biol. 2007. Vol. 368(5). P. 1358−1366. DOI: 10.1016/j.jmb.2007.02.107. EDN: KFUMKR.

Lin M.F. et al. Role of the BaeSR two-component system in the regulation of Acinetobacter baumannii adeAB genes and its correlation with tigecycline susceptibility // BMC Microbiol. 2014. Vol. 14(119). Art. 12. DOI: 10.1186/1471-2180-14-119. EDN: MFJFRV.

Mohamed E.A. et al. Acinetobacter baumannii biofilm and its potential therapeutic targets // Future J. Pharm. Sci. 2023. Vol. 9. Art. 82. DOI: 10.1186/s43094-023-00525-w. EDN: FSMZDT.

Nairn B.L. et al. The response of Acinetobacter baumannii to zinc starvation // Cell Host and Microbe. 2016. Vol. 19(6). P. 826−836. DOI: 10.1016/j.chom.2016.05.007. EDN: WUFBJR.

Nie D. et al. Outer membrane protein A (OmpA) as a potential therapeutic target for Acinetobacter bau-mannii infection // J. Biomed. Sci. 2020. Vol. 27. Art. 26. DOI: 10.1186/s12929-020-0617-7. EDN: EECLGB.

Novović K. et al. Acinetobacter spp. porin Omp33-36: Classification and transcriptional response to carbapenems and host cells // PLoS ONE. 2018. Vol. 13(8). Art. e0201608. DOI: 10.1371/journal.pone.0201608.

Pérez A. et al. The FhaB/FhaC two-partner secretion system is involved in adhesion of Acinetobacter baumannii AbH12O-A2 strain // Virulence. 2017. Vol. 8(6). Р. 959−974. DOI: 10.1080/21505594.2016.1262313.

Ramezanalizadeh F., Owlia P., Rasooli I. Type I pili, CsuA/B and FimA induce a protective immune re-sponse against Acinetobacter baumannii // Vaccine. 2020. Vol. 38(34). P. 5436−5446. DOI: 10.1016/j.vaccine.2020.06.052. EDN: JGXJFS.

Rumbo C. et al. The Acinetobacter baumannii Omp33-36 porin is a virulence factor that induces apop-tosis and modulates autophagy in human cells // Inf. Immun. 2014. Vol. 82(11). Р. 4666−4680. DOI: 10.1128/iai.02034-14.

Tomaras A.P. et al. Attachment to and biofilm formation on abiotic surfaces by Acinetobacter bau-mannii: involvement of a novel chaperone-usher pili assembly system // Microbiol. (Reading). 2003. Vol. 149(12). P. 3473−3484. DOI: 10.1099/mic.0.26541-0.

Weidensdorfer M. et al. The Acinetobacter trimeric autotransporter adhesin Ata controls key virulence traits of Acinetobacter baumannii // Virulence. 2019. Vol. 10(1). P. 68−81. DOI: 10.1080/21505594.2018.1558693.

Wen Y. et al. Mechanistic insight into how multidrug resistant Acinetobacter baumannii response regula-tor AdeR recognizes an intercistronic region // Nuc. Acids Res. 2017. Vol. 45(16). Р. 9773−9787. DOI: 10.1093/nar/gkx624.

Wiles T.J., Mulvey M.A. The RTX pore-forming toxin α-hemolysin of uropathogenic Escherichia coli: progress and perspectives // Future Microbiol. 2013. Vol. 8(1). P. 73−84. DOI: 10.2217/fmb.12.131.

Wipperman M.F. et al. Mycobacterial mutagenesis and drug resistance are controlled by phosphoryla-tion- and cardiolipin-mediated inhibition of the RecA coprotease // Mol. Cell. 2018. Vol. 72(1). Р. 152−161. DOI:10.1016/j.molcel.2018.07.037.

Wong D. et al. Clinical and pathophysiological overview of Acinetobacter infections: a Century of chal-lenges // Clin. Microbiol. Rev. 2017. Vol. 30(1). P. 409−447. DOI: 10.1128/CMR.00058-16. EDN: XZOUUR.

Wörmann M.E. et al. Sequence, distribution and chromosomal context of class I and class II pilin genes of Neisseria meningitidis identified in whole genome sequences // BMC Genomics. 2014. Vol. 15. Art. 253. DOI: 10.1186/1471-2164-15-253.

Zeighami H. et al. Virulence characteristics of multidrug resistant biofilm forming Acinetobacter bau-mannii isolated from intensive care unit patients // BMC Inf. Dis. 2019. Vol. 19(629). Art. 629. DOI: 10.1186/s12879-019-4272-0. EDN: HZRSAP.