VESICLES OF TYPICAL AND GENOVARIANT STRAINS OF O1 EL TOR CHOLERAE VIBRIO, THEIR ISOLATION AND CHARACTERIZATION

Main Article Content

Olga A. Yakusheva
Lyudmila P. Alekseeva
Veronika V. Evdokimova
Misak G. Meloyan
Vera P. Zyuzina
Diana I. Simakova

Abstract

was found that a typical strain and genovariants of Vibrio cholerae O1 when cultured in AKI medium at different growth stages release outer membrane vesicles into the environment. Preparations of vesicles were obtained by ammonium sulfate precipitation and visualized by electron microscopy. Using monoclonal antibodies and polyclonal antitoxic conjugate, the presence of lipopolysaccharide and outer membrane proteins OmpU and OmpT, as well as cholera toxin in these structures was determined. On the model of cell culture of two cell lines CHO-K1 and HuTu 80 it was shown that in the presence of vesicles morphological changes of target cells characteristic for cholera toxin are observed. The results obtained suggest that the content of outer membrane vesicles depends on the stage of vibrio growth, and the biologically active substances produced by them are capable of causing cell damage, thereby provoking an inflammatory reaction of cells in the host organism.

Article Details

How to Cite
Yakusheva О. А., Alekseeva Л. П., Evdokimova В., Meloyan М. Г., Zyuzina В., & Simakova Д. И. (2024). VESICLES OF TYPICAL AND GENOVARIANT STRAINS OF O1 EL TOR CHOLERAE VIBRIO, THEIR ISOLATION AND CHARACTERIZATION. Bulletin of Perm University. Biology, (1), 61–73. https://doi.org/10.17072/1994-9952-2024-1-61-73
Section
Микробиология
Author Biographies

Olga A. Yakusheva, Rostov-on-Don Antiplague Scientific Research Institute of Rospotrebnadzor, Rostov-on-Don, Russia

Research associate

Lyudmila P. Alekseeva, Rostov-on-Don Antiplague Scientific Research Institute of Rospotrebnadzor, Rostov-on-Don, Russia

Professor, doctor of biological sciences

Veronika V. Evdokimova, Rostov-on-Don Antiplague Scientific Research Institute of Rospotrebnadzor, Rostov-on-Don, Russia

Candidate of biological

Misak G. Meloyan, Rostov-on-Don Antiplague Scientific Research Institute of Rospotrebnadzor, Rostov-on-Don, Russia

Junior scientist employee

Vera P. Zyuzina, Rostov-on-Don Antiplague Scientific Research Institute of Rospotrebnadzor, Rostov-on-Don, Russia

Candidate of biological, sciences senior

Diana I. Simakova , Rostov-on-Don Antiplague Scientific Research Institute of Rospotrebnadzor, Rostov-on-Don, Russia

Candidate of biological, sciences senior

References

Алексеева Л.П. и др. Современные методические приёмы очистки холерного токсина // Вестник биотехнологии и физико-химической биологии имени Ю.А. Овчинникова. 2019. Т. 15, № 1. С. 5–9.

Аронова Н.В. и др. Роль везикул наружных мембран возбудителей особо опасных инфекций в па-тогенезе и иммуногенезе инфекционного процесса // Проблемы особо опасных инфекций. 2021. № 4. С. 6–15. doi: 10.21055/0370-1069-2021-4-6-15.

Ашмарин И.П. Воробьев А.А. Статистические методы в микробиологических исследованиях. Л.: Медгиз, 1962. 180 с.

Евдокимова В.В. и др. Иммуноферментные методы анализа в диагностике холеры // Клиническая лабораторная диагностика. 2016. № 5. С. 303–307.

Егоров А.М. и др. Теория и практика иммуноферментного анализа. М.: Высш. шк., 1991. 288 с.

Заднова С.П. и др. Сравнительный анализ адаптационных свойств типичных и генетически изме-ненных штаммов Vibrio cholerae биовара El Tor // Журнал микробиологии. 2019. № 2. С. 25–30.

Зюзина В.П. и др. Роль везикул в транспорте холерного токсина // Проблемы особо опасных ин-фекций. 2023. № 2. С. 29–34. doi: 10.21.055/0370-1069-2023-2-29-34/.

Кудрякова И.В. и др. Изучение факторов биогенеза везикул Lysobacter sp. XL1 // Биохимия. 2017. Т 82, № 4. С. 677–686.

Фрешни Р.Я. Культура животных клеток: практическое руководство. М.: Бином. Лаборатория зна-ний, 2018. 691с.

Якушева О.А. и др. Получение антитоксических сывороток и возможность их применения в диа-гностике холеры // Вестник Пермского университета. Сер. Биология. 2019. Вып. 4. С. 426–433.

Якушева О.А. и др. Характеристика и оценка диагностической значимости поли- и моноклональ-ных пероксидазных конъюгатов к холерному токсину // Вестник биотехнологии и физико-химической биологии имени Ю.А. Овчинникова. 2020. Т. 16, № 2. С. 37–43.

Altindis E., Fu Y., Mekalanos J.J. Proteomic analysis of Vibrio cholerae outer membrane vesicles // Proc. Natl. Acad. Sci. USA. 2014. Vol. 111, № 15. P. 1548–1556. doi: 10.1073/pnas.1403683111.

Boardman B.K., Meehan B.M., Fullner K.J. Satchell Growth phase regulation of Vibrio cholerae RTX toxin export // J. Bacteriol. 2007. Vol. 189, № 5. P. 1827–1835. doi: 10.1128/JB.01766-06.

Brameyer S. et al. Outer Membrane Vesicles Facilitate Trafficking of the Hydrophobic Signaling Mole-cule CAI-1 between Vibrio harveyi Cells // J. Bacteriol. 2018. Vol. 200, № 15. doi: 10.1128/JB.00740-17.

Caruana J.C., Walper S.A. Bacterial Membrane Vesicles as Mediators of Microbe - Microbe and Microbe - Host Community Interactions // Front Microbiol. 2020. Vol. 11, № 432. doi: 10.3389/fmicb.2020.00432.

Chatterjee D., Chaudhuri K. Vibrio cholerae O395 outer membrane vesicles modulate intestinal epitheli-al cells in a NOD1 protein-dependent manner and induce dendritic cell-mediated Th2/Th17 cell responses // J. Biol. Chem. 2013. Vol. 288, № 6. P. 4299–42309. doi: 10.1074/jbc.M112.408302.

Elluri S. et al. Outer Membrane Vesicles Mediate Transport of Biologically Active Vibrio cholerae Cytol-ysin (VCC) from V. cholerae Strains // PLoS One. 2014. Vol. 9, № 9. e106731. doi: 10.1371/journal.pone.0106731.

Iwanaga M., Kuyyakanond T. Large production of cholera toxin by Vibrio cholerae O1 in yeast extract peptone water. // Journal of Clinical Microbiology. 1987. Vol. 25, № 1. P. 2314–2316.

Jugder B.E., Watnick P.I. Vibrio cholerae Sheds Its Coat to Make Itself Comfortable in the Gut // Cell Host & Microbe. 2020. Vol. 27, № 2. P. 225–237. doi.org/10.1016/j.chom.2020.01.017.

Klimentová J., Stulík J. Methods of isolation and purification of outer membrane vesicles from gram-negative bacteria // Microbiological Research. 2015. Vol. 170. P. 1–9. doi: 10.1016/j.micres.2014.09.006.

Laemmli U.K. Cleavage of structural proteins during assembly of the head of bacteriophage T4 // Na-ture. 1970. Vol. 227, № 5259. P. 680–685.

Lowry O.H. et al. Protein measurement with the folin phenol reagent // J. Biol. Chem. 1951. Vol. 193, № 1. P. 265–275.

O’Donoghue E.J. et al. Lipopolysaccharide structure impacts the entry kinetics of bacterial outer mem-brane vesicles into host cells // PLoS Pathog. 2017. Vol. 13, № 11. e1006760. doi: 10.1371/journal.ppat.1006760.

Rasti E.S. et al. Association of Vibrio cholerae 569B outer membrane vesicles with host cells occurs in a GM1-independent manner // Cell Microbiol. 2018. Vol. 20, № 6. e12828. doi: 10.1111/cmi.12828.

Rasti E.S., Brown A.C. Cholera Toxin Encapsulated within Several Vibrio cholerae O1 Serotype Inaba Outer Membrane Vesicles Lacks a Functional B-Subunit // Toxins (Basel). 2019. Vol. 11, № 4. P. 207. doi: 10.3390/toxins11040207.

Sjöström A.E., et al. Membrane vesicle-mediated release of bacterial RNA // Sci. Rep. 2015. Vol. 5. doi: 10.1038/srep15329.

Song T., Sabharwal D., Wai S.N. VrrA mediates Hfq-dependent regulation of OmpT synthesis in Vibrio cholerae // J. Mol. Biol. 2010. Vol. 400, № 4. P. 682–688. doi: 10.1016/j.jmb.2010.05.061.

Song T. et al. A new Vibrio cholerae sRNA modulates colonization and affects release of outer mem-brane vesicles // Mol. Microbiol. 2008. Vol. 70, № 1. P. 100–111. doi: 10.1111/j.1365-2958.2008.06392.x.

Towbin H. Immunoblotting and dot immunobinding – Current status and outlook // J. Immunol. Meth-ods. 1984. Vol. 72. P. 313–340.

Zingl F.G. et al. Outer Membrane Vesiculation Facilitates Surface Exchange and In Vivo Adaptation of Vibrio cholerae // Cell Host Microbe. 2020. Vol. 27, № 2. P. 225–237. doi: 10.1016/j.chom.2019.12.002.

Zingl F.G. et al. Outer Membrane Vesicles of Vibrio cholerae Protect and Deliver Active Cholera Toxin to Host Cells via Porin-Dependent Uptake // mBio. 2021. Vol. 12, № 3. e0053421. doi: 10.1128/mBio.00534-21.