Dibutyl phthalate degrading bacteria isolated from the rhizosphere of bluegrass (Poa pratensis L.)

Main Article Content

Ekaterina S. Korsakova
Anna A. Pyankova
Elena G. Plotnikova

Abstract

The ability of three bacterial strains of the class Actinomycetes, isolated from the rhizosphere of bluegrass (Poa pratensis L.) plants growing in the industrial development area of the Verkhnekamsk salt deposit (Perm krai), to grow on dibutyl phthalate (DBP) as the only source of carbon and energy was studied. Based on 16S rRNA gene analysis, it was shown that the strain Rh7bel showed similarity at 100% level with Rhodococcus wratislaviensis NBRC 100605T, and strains NKDBFbel and NKDBFgelt are phylogenetically close to two type strains of the species Pseudarthrobacter oxydans and Pseudarthrobacter polychromogenes (99.83% similarity). DBP-degrading strains are characterized by efficient growth on the key metabolite of DBP degradation, ortho-phthalic acid, and utilization of this metabolite. The strain Rhodococcus sp. Rh7bel demonstrated the highest rates of DBP utilization: the maximum specific substrate consumption rate was 0.018±0.002 h-1, substrate utilization was 70.7% in 72 hours (initial DBP concentration 0.2 g/L). Thus, rhizosphere DBP-degrading strains Rhodococcus sp. Rh7bel, Pseudarthrobacter spp. NKDBFbel and NKDBFgelt are promising for further study and development of technology for phytoremediation of soils contaminated with phthalates.

Article Details

How to Cite
Korsakova Е. С., Pyankova А. А., & Plotnikova Е. Г. (2023). Dibutyl phthalate degrading bacteria isolated from the rhizosphere of bluegrass (Poa pratensis L.). Bulletin of Perm University. Biology, (4), 349–355. https://doi.org/10.17072/1994-9952-2023-4-349-355
Section
Микробиология
Author Biographies

Ekaterina S. Korsakova, Institute of Ecology and Genetics of Microorganisms, Perm State University, Perm, Russia

Candidate of biological sciences, researcher, associate professor of the Department of Botany and Plant Genetics

Anna A. Pyankova, Institute of Ecology and Genetics of Microorganisms, Perm, Russia

Junior researcher

Elena G. Plotnikova, Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the RAS, Perm, Russia

Doctor of biological sciences, associate professor, head of laboratory, professor of the Department of Botany and Plant Genetics

References

Бачурин Б.А., Одинцова Т.А. Стойкие органические загрязнители в отходах горного производства // Современные экологические проблемы Севера. Апатиты: Изд-во Кольского НЦ РАН. 2006. Ч. 2. С. 7–9.

Методы общей бактериологии / под ред. Ф. Герхардта и др. М.: Мир, 1983. Т. 1–3.

Нетрусов А.И. Практикум по микробиологии. М.: Академия, 2005. 608 с.

Chen F. et al. High-efficiency degradation of phthalic acid esters (PAEs) by Pseudarthrobacter defluvii E5: performance, degradative pathway, and key genes // Sci. Total Environ. 2021. Vol. 794. 148719.

Choi K.Y. et al. Molecular and biochemical analysis of phthalate and terephthalate degradation by Rho-dococcus sp. strain DK17 // FEMS Microbiol. Letters. 2005. Vol. 252. P. 207–213.

Eaton R.W. Plasmid-encoded phthalate catabolic pathway in Arthrobacter keyseri 12B // J. Bacteriol. 2001. Vol. 183. P. 3689–3703.

Jin D.-C. et al. Biodegradation of di-n-butyl phthalate by Rhodococcus sp. JDC-11 and molecular detec-tion of 3,4-phthalate dioxygenase gene // J. Microbiol. Biotechnol. 2010. Vol. 20(10). P. 1440–1445.

Kanaujiya D.K., Sivashanmugam S., Pakshirajan K. Biodegradation and toxicity removal of phthalate mixture by Gordonia sp. in a continuous stirred tank bioreactor system // Environmental Technology & Innova-tion. 2022. Vol. 26. 102324.

Kasai D. et al. 2,3-dihydroxybenzoate meta-cleavage pathway is involved in o-phthalate utilization in Pseudomonas sp. strain PTH10 // Scientific Reports. 2019. Vol. 9. 1253.

Li Y.W. et al. Plant uptake and enhanced dissipation of di(2-ethylhexyl) phthalate (DEHP) in spiked soils by different plant species // International Journal of Phytoremediation. 2014. Vol. 16. P. 609–620.

Liang D.-W. et al. Phthalates biodegradation in the environment // Appl. Microbiol. Biotechnol. 2008. Vol. 80. P. 183–198.

Liao C.S., Nishikawa Y., Shih Y.T. Characterization of di-n-butyl phthalate phytoremediation by garden lettuce (Lactuca sativa L. var. longifolia) through kinetics and proteome analysis // Sustainability. 2019. Vol. 11. P. 1–16.

Randika J.L.P.C. et al. Bioremediation of pesticidecontaminated soil: a review on indispensable role of soil bacteria // The Journal of Agricultural Sciences – Sri Lanka. 2022. Vol. 17(1). P. 19–43.

Raymond R.L. Microbial oxidation of n-paraffinic hydrocarbons // Develop. Ind. Microbiol. 1961. Vol. 2(1). P. 23–32.

Stanislauskiene R. et al. Analysis of phthalate degradation operon from Arthrobacter sp. 68b // Biologi-ja. 2011. Vol. 57(3). P. 45–54.

Vamsee-Krishna C., Phale P.S. Bacterial degradation of phthalate isomers and their esters // Indian J. Microbiol. 2008. Vol. 48. P. 19–34.

Wenzel W.W. Rhizosphere processes and management in plant-assisted bioremediation (phytoremedia-tion) of soils // Plant & Soil. 2009. Vol. 321. P. 385–408.

Wu K. et al. Responses of soil microbial community and enzymes during plant-assisted biodegradation of di-(2-ethylhexyl) phthalate and pyrene // International Journal of Phytoremediation. 2019. Vol. 21(7). P. 683–692.

Zhang Y. et al. Effect of di-n-butyl phthalate on root physiology and rhizosphere microbial community of cucumber seedlings // Journal of Hazardous Materials. 2015. Vol. 289. P. 9–17.