ЭФФЕКТЫ СЕМАФОРИНА 4D В ИММУННОЙ СИСТЕМЕ, ОПОСРЕДУЕМЫЕ ПЛЕКСИНОВЫМИ РЕЦЕПТОРАМИ

Main Article Content

Юлия Вакифовна Валиева
Елена Михайловна Куклина

Abstract

Плексины – белки, служащие рецепторами для молекул семейства семафоринов, в том числе – для семафорина IV класса Sema4D. Именно плексиновые рецепторы опосредуют ключевые эффекты Sema4D в организме, такие как аксональное наведение и стимуляция ангиогенеза. Длительное время считали, что экспрессия плексинов ограничена неиммунными тканями, тогда как в иммунной системе Sema4D реализует свои эффекты через мембранную молекулу CD72. Однако в целом ряде работ показано присутствие плексиновых рецепторов для Sema4D и на мембране иммунных клеток. Следовательно, они должны принимать участие в опосредовании иммунорегуляторных эффектов Sema4D. Настоящий обзор посвящен анализу данных по основным функциям плексиновых рецепторов для Sema4D в иммунной системе и механизмам реализации плексин-зависимых эффектов данного семафорина в иммунных клетках.

Article Details

How to Cite
Валиева, Ю. В., & Куклина, Е. М. (2019). ЭФФЕКТЫ СЕМАФОРИНА 4D В ИММУННОЙ СИСТЕМЕ, ОПОСРЕДУЕМЫЕ ПЛЕКСИНОВЫМИ РЕЦЕПТОРАМИ. Bulletin of Perm University. Biology, (3), 359–364. Retrieved from https://press.psu.ru/index.php/bio/article/view/2819
Section
Клиническая иммунология, аллергология
Author Biographies

Юлия Вакифовна Валиева, Институт экологии и генетики микроорганизмов – филиал ФГБУН ПФИЦ УрО РАН

Младший научный сотрудник

Елена Михайловна Куклина, Институт экологии и генетики микроорганизмов – филиал ФГБУН ПФИЦ УрО РАН

Доктор биологических наук, ведущий научный сотрудник лаборатории иммунорегуляции

References

Artigiani S. et al. Functional regulation of semaphoring receptors by proprotein convertases // J. Biol. Chem. 2003.Vol. 278. P. 10094–10101.

Bougeret C. et al. Increased surface expression of a newly identified 150-kDa dimer early after human T lymphocyte activation // J. Immunol. 1992. Vol. 148. P. 318–323.

Chabbert-de Ponnat I. et al. Soluble CD100 functions on human monocytes and immature dendritic cells require plexin C1 and plexin B1, respectively // Int. Immunol. 2005. Vol. 17. P. 439–447.

Driessens M.H. et al. B plexins activate Rho through PDZ-RhoGEF // FEBS Lett. 2002. Vol. 529. P. 168–172.

Dubreuil C.I., Winton M.J., McKerracher L. Rho acti-vation patterns after spinal cord injury and the role of activated Rho in apoptosis in the central nervous system // J. Biol. Chem. 2003. Vol. 162. P. 233–243.

Fujisawa H. et al. Function of a cell adhesion mole-cule, plexin, in neuron network formation // Dev. Neurosci. 1997. Vol. 19, № 1. P. 101–105.

Gherardi E. et al. The sema domain // CurrOpin Struct. Biol. 2004. Vol. 14. P. 669–678.

Giraudon P. et al. Semaphorin CD100 from activated T lymphocytes induces process extension collapse in oligodendrocytes and death of immature neural cells // J. Immunol. 2004. Vol. 172. P. 1246–1255.

Granziero L. et al. CD100/Plexin-B1 interactions sus-tain proliferation and survival of normal and leu-kemic CD5þB lymphocytes // Blood. 2003. Vol. 101. P. 1962–1969.

Holl E.K. et al. Plexin-B2 and Plexin-D1 in dendritic cells: expression and IL-12/IL-23p40 production // PLoS One. 2012. Vol. 7, № 8. P. 1–9.

Ishida I. et al. Involvement of CD100, a lymphocyte semaphorin, in the activation of the human immune system via CD72: implications for the regulation of immune and inflammatory responses // International Immunology. 2003. Vol. 15. P. 1027–1034.

Jin Z., Strittmatter S.M. Rac1 mediates collapsin-1-induced growth cone collapse // J. Neurosci. 1997. Vol. 17. P. 6256–6263.

Kruger R.P., Aurandt J., Guan K.L. Semaphorins command cells to move // Nat. Rev. Mol. Cell Biol. 2005. Vol. 6. P. 789–800.

Kuhn T.B. et al. Regulating actin dynamics in neuronal growth cones by ADF/cofilin and rho family GTPases // J. Neurobiol. 2000. Vol. 44. P. 126–144.

Lee J.Y. et al. 17β-Estradiol inhibits apoptotic cell death of oligodendrocytes by inhibiting RhoA-JNK3 activation after spinal cord injury // Endocri-nology. 2012. Vol. 153. P. 3815–3827.

Luque M.C. et al. CD100 and plexins B2 and B1 me-diate monocyteendothelial cell adhesion and might take part in atherogenesis // Mol. Immunol. 2015. Vol. 67. P. 559–567.

Nakamura F., Kalb R.G., Strittmatter S.M. Molecular basis of semaphorinmediated axon guidance // J. Neurobiol. 2000. Vol. 44. P. 219–229.

O’Connor B.P., Ting J.P. The evolving role of semaphorins and plexins in the immune system: Plexin-A1 regulation of dendritic cell function // Immunol. Res. 2008. Vol. 41. P. 217–222.

Ohta K. et al. Involvement of neuronal cell surface molecule B2 in the formation of retinal plexiform layers // Neuron. 1992. Vol. 9. P. 151–161.

Ohta K. et al. Plexin: a novel neuronal cell surface molecule that mediates cell adhesion via a homophilic binding mechanism in the presence of calcium ions // Neuron. 1995. Vol. 14. P. 1189–1199.

Oinuma I. et al. The Semaphorin 4D receptor Plexin-B1 is a GTPase activating protein for R-Ras // Science. 2004. Vol. 305. P. 862–865.

Okuno T. et al. Roles of Sema4D-plexin-B1 interactions in the central nervous system for pathogenesis of experimental autoimmune encephalomyelitis // J. Immunol. 2010. Vol. 184. P. 1499–1506.

Peral N., Sariola H., Immonen T. More than nervous: The emerging roles of plexins // Differentiation. 2012. Vol. 83. P. 77–91.

Rohm B. et al. Plexin/neuropilin complexes mediate repulsion by the axonal guidance signal semapho-rin 3A // Mech. Dev. 2000. Vol. 93. P. 95–104.

Roney K. et al. Plexin-B2 negatively regulates macro-phage motility, Rac, and Cdc42 activation // PLoS One. 2011. Vol. 6. P. 1–14.

Serini G. et al. Semaphorins and tumor angiogenesis // Angiogenesis. 2009. Vol. 12. P. 187–193.

Smith P. et al. Expression of neuroimmune semaphorins 4A and 4D and their receptors in the lung is enhanced by allergen and vascular endothelial growth factor // BMC Immunol. 2011. Vol. 19. P. 12–30.

Swiercz J.M. et al. Plexin-B1 directly interacts with PDZ-RhoGEF/LARG to regulate RhoA and growth cone morphology // Neuron. 2002. Vol. 35. P. 51–63.

Swiercz J.M., Worzfeld T., Offermanns S. ErbB-2 and met reciprocally regulate cellular signaling via plexin-B1 // J. Biol. Chem. 2008. Vol. 283. P. 1893–1901.

Таkahashi T. et al. Plexin-neuropilin-1 complexes form functional semaphorin-3A receptors // Cell. 1999. Vol. 99. P. 59–69.

Tamagnone L. et al. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates // Cell. 1999. Vol. 99. P. 71–80.

Tamagnone L., Comoglio P.M. Signalling by semaphorin receptors // Trends Cell Biol. 2000. Vol. 10. P. 377–383.

Toguchi M. et al. Involvement of Sema4D in the control of microglia activation // Neurochem. Int. 2009. Vol. 55. P. 573–580.

Toyofuku T. et al. FARP2 triggers signals for Sema3A-mediated axonal repulsion // Nat. Neurosci. 2005. Vol. 8. P. 1712–1719.

Walzer T., Galibert L., De Smedt T. Dendritic cell function in mice lacking Plexin C1 // Int. Immunol. 2005. Vol. 17. P. 943–950.

Yan H. et al. Plexin B2 and Semaphorin 4C Guide T Cell Recruitment and Function in the Germinal Center // Cell Rep. 2017. Vol. 19. P. 995–1007.

Yu D. et al. Axon growth and guidance genes identify T-dependent germinal centre B cells // Immunol. Cell. Biol. 2008. Vol. 86. P. 3–14.