Механизмы взаимодействия мелатонина c лимфоцитами
##plugins.themes.bootstrap3.article.main##
Аннотация
##plugins.themes.bootstrap3.article.details##
Лицензионный договор на право использования научного произведения в научных журналах, учредителем которых является Пермский государственный национальный исследовательский университет
Текст Договора размещен на сайте Пермского государственного национального исследовательского университета http://www.psu.ru/, а также его можно получить по электронной почте в «Отделе научных периодических и продолжающихся изданий ПГНИУ»: YakshnaN@psu.ru или в редакциях научных журналов ПГНИУ.
Библиографические ссылки
Глебездина Н.С. и др. Молекулярные механизмы контроля дифференцировки регуляторных Т-лимфоцитов экзогенным мелатонином // Доклады Академии наук. 2019a. Т. 484, № 2. С. 224–227.
Глебездина Н.С. и др. Вклад разных типов мелатониновых рецепторов в гормон-зависимую регу-ляцию дифференцировки Т-лимфоцитов, продуцирующих IL-17 (Th17) // Российский иммунологический журнал. 2019b. Т. 13, № 2. С. 751–753.
Куклина Е.М., Глебездина Н.С., Некрасова И.В. Роль мелатонина в контроле дифференцировки Т-лимфоцитов, продуцирующих интерлейкин-17 (Th17) // Бюллетень экспериментальной биологии и меди-цины. 2015. Т. 160, № 11. С. 604–607.
Alvarez-Sanchez N. et al. Melatonin controls experimental autoimmune encephalomyelitis by altering the T effector/regulatory balance // Brain Behav Immun. 2015. Vol. 50. P. 101–114.
Arias J. et al. Effect of melatonin on lymphocyte proliferation and production of interleukin-2 (IL-2) and interleukin-1 beta (IL-1 beta) in mice splenocytes // Invest. Clin. 2003. Vol. 44, № 1. P. 41–50.
Calamini B. et al. Kinetic, thermodynamic and X-ray structural insights into the interaction of melatonin and analogues with quinone reductase 2 // Biochem. J. 2008. Vol. 413(1). P. 81–91.
Calvo J.R., Gonzalez-Yanes C., Maldonado M. D. The role of melatonin in the cells of the innate immuni-ty: a review // J. Pineal. Res. 2013. Vol. 55, № 2. P. 103−120.
Cardinali D.P et al. Melatonin and the metabolic syndrome: physiopathologic and therapeutical implica-tions // Neuroendocrinology. 2011. Vol. 93, № 3. P. 133−142.
Carrillo-Vico A. et al. Evidence of mle synthesis by human lymphocytes and its physiological significance: possible role as intracine, autocrine and/or paracrine substance // FASEB J. 2004. Vol. 18. P. 537–539.
Carrillo-Vico A., Lardone P.J., Naji L. Beneficial pleiotropic actions of melatonin in an experimental model of septic shock in mice: Regulation of pro-/ anti-inflammatory cytokine network, protection against oxi-dative damage and anti-apoptotic effects // J. Pineal. Res. 2005. Vol. 39. P. 400–408.
Carrillo-Vico A. et al. Melatonin: buffering the immune system // Int. J. Mol. Sci. 2013. Vol. 14, № 4. P. 8638−8683.
Chen F. et al. Effect of melatonin on monochromatic light-induced T-lymphocyte proliferation in the thymus of chickens // J. Photochem. Photobiol B. 2016. Vol. 161. P. 9–16.
Comai S., Gobbi G. Unveiling the role of melatonin MT2 receptors in sleep, anxiety and other neuropsy-chiatric diseases: a novel target in psychopharmacology // J. Psychiatry Neurosci. 2014. Vol. 39. P. 6–21.
Cutando A. et al. Role of melatonin in cancer treatment // Anticancer Res. 2012. Vol. 32, № 7. P. 2747−2753.
Ding S. et al. Melatonin stabilizes rupture-prone vulnerable plaques via regulating macrophage polariza-tion in a nuclear circadian receptor RORα-dependent manner // J. Pineal. Res. 2019. Vol. 67. P. e12581.
Drazen D.L. et al. In vitro melatonin treatment enhances splenocyte proliferation in prairie voles // J. Pin-eal. Res. 2000. Vol. 28, № 1. P. 34−40.
Du J. et al. Isoform-Specific Inhibition of RORα-Mediated Transcriptional Activation by Human FOXP3 // J. Immunol. 2008. Vol. 180, № 7. P. 4785–4792.
Dubocovich M.L., Markowska M. Functional MT1 and MT2 melatonin receptors in mammals // Endo-crine. 2005. Vol. 27. P. 101–110.
Ekmekcioglu C. Melatonin receptors in humans: biological role and clinical relevance // Biomed. Phar-macother. 2006. Vol. 60, № 3. P. 97–108.
Emet M. et al. A Review of Melatonin, Its Receptors and Drugs // The Eurasian Journal of Medicine. 2016. Vol. 48 (2). P. 135–141.
Espino J. et al. Protective effect of melatonin against human leukocyte apoptosis induced by intracellu-lar calcium overload: relation with its antioxidant actions // J. Pineal. Res. 2011. Vol. 51, № 2. P. 195–206.
Espino J., Rodriguez A.B., Pariente J.A. The inhibition of TNF-α-induced leucocyte apoptosis by melato-nin involves membrane receptor MT1/MT2 interaction // J. Pineal. Res. 2013. Vol. 54, № 4. P. 442–452.
Farez M.F. et al. Melatonin Contributes to the Seasonality of Multiple Sclerosis Relapses // Cell. 2015. Vol. 162. P. 1338–1352.
Farez M.F. et al. Anti-inflammatory effects of melatonin in multiple sclerosis // Bioessays. 2016. Vol. 38. P. 1016–1026.
Favero G. et al. Melatonin as an Anti-Inflammatory Agent Modulating Inflammasome Activation // Int. J. Endocrinol. 2017. Vol. 2017. P. 1835195.
Ferlazzo N. et al. Is Melatonin the Cornucopia of the 21st Century? // Antioxidants. 2020. Vol. 9, № 11. P. 1088.
Garcia J.A. et al. Disruption of the NF-κB/NLRP3 connection by melatonin requires retinoid-related or-phan receptor-α and blocks the septic response in mice // FASEB J. 2015. Vol. 29. P. 3863–3875.
Garcia-Maurino S. et al. Melatonin enhances IL-2, IL-6, and IFNγ production by human circulating CD4+ cells: a possible nuclear receptor-mediated mechanism involving T helper type 1 lymphocytes and mono-cytes // J. Immunol. 1997. Vol. 159. P. 574–581.
Garcia-Maurino S. Melatonin activates Th1 lymphocytes by increasing IL-12 production // Life Sci. 1999. Vol. 65 P. 2143–2150.
Guerrero J.M., Reiter R.J. Melatonin-immune system relationships // Curr. Top. Med. Chem. 2002. V. 2. P. 167–179.
Gupta S., Haldar C. Physiological crosstalk between melatonin and glucocorticoid receptor modulates t-cell mediated immune responses in a wild tropical rodent, funambulus pennant // J. Steroid. Biochem. Mol. Biol. 2013. Vol. 134. P. 23–36.
Huang H. et al. Melatonin prevents endothelial dysfunction in SLE by activating the nuclear receptor ret-inoic acid-related orphan receptor-α // Int. Immunopharmacol. 2020. Vol. 83. P. 106365.
Johansson L.C. et al. XFEL structures of the human MT2 melatonin receptor reveal the basis of subtype selectivity // Nature. 2019. Vol. 569 (7755). P. 289–292.
Kato K. et al. Neurochemical properties of ramelteon (TAK-375), a selective MT35. 1/MT2 receptor ag-onist // Neuropharmacology. 2005. Vol. 48. P. 301–310.
Kojima H., Muromoto R., Takahashi M. Inhibitory effects of azole-type fungicides on interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ // Toxicol. Appl. Pharmacol. 2012. Vol. 259. P. 338–345.
Kuklina E.M. Melatonin as potential inducer of Th17 cell differentiation // Medical Hypothesis. 2014. Vol. 83. P. 404–406.
Lardone P.J. et al. Melatonin synthesized by Jurkat human leukemic T cell line is implicated in IL-2 pro-duction // J. Cell. Physiol. 2006. Vol. 206. P. 273–279.
Lardone P.J. et al. Blocking of melatonin synthesis and MT(1) receptor impairs the activation of Jurkat T cells // Cell. Mol. Life. Sci. 2010. Vol. 67. P. 3163–3172.
Lardone P.J. et al. Melatonin synthesized by T lymphocytes as a ligand of the retinoic acid-related or-phan receptor // J. Pineal Res. 2011. Vol. 51. P. 454–462.
Leon J. et al. Structure-related inhibition of calmodulin-dependent neuronal nitric-oxide synthase activity by melatonin and synthetic kynurenines // Mol. Pharmacol. 2000. Vol. 58, № 5. P. 967–975.
Li Z. et al. Melatonin inhibits apoptosis in mouse Leydig cells via the retinoic acid-related orphan nuclear receptor α/p53 pathway // Life Sci. 2020. Vol. 246. P. 117431.
Lin L. et al. Melatonin in Alzheimer’s disease // Int. J. Mol. Sci. 2013. Vol. 14. P. 14575−14593.
Ma H. et al. ROR: Nuclear Receptor for Melatonin or Not? // Molecules. 2021. Vol. 26, № 9. P. 2693.
Mahmood D. Pleiotropic Effects of Melatonin // Drug Res (Stuttg). 2019. Vol. 69, № 2. P. 65−74.
Naranjo M.C. et al. Melatonin biosynthesis in the thymus of humans and rats // Cell. Mol. Life Sci. 2007. Vol. 64, № 6. P. 781–790.
NaveenKumar S.K. et al. Melatonin restores neutrophil functions and prevents apoptosis amid dysfunc-tional glutathione redox system // J. Pineal. Res. 2020. Vol. 69, № 3. P. e12676.
Okamoto H.H. et al. Cryo-EM structure of the human MT1-Gi signaling complex // Nat. Struct. Mol Biol. 2021. Vol. 28 (8). P. 694–701.
Pariente R. et al. Participation of MT3 melatonin receptors in the synergistic effect of melatonin on cyto-toxic and apoptotic actions evoked by chemotherapeutics // Cancer Chemother Pharmacol. 2017. Vol. 80, № 5. P. 985–998.
Pozo D. et al. mRNA expression of nuclear receptor RZR/RORa, melatonin membrane receptor MT1, and hydroxindole-O-methyltransferase in different populations of human immune cells // J. Pineal. Res. 2004. Vol. 37. P. 48−54.
Raghavendra V. et al. Melatonin provides signal 3 to unprimed CD4(+) T cells but failed to stimulate LPS primed B cells // Clin. Exp. Immunol. 2001. Vol. 124. P. 414–422.
Ragonda F., Diederich M., Ghibelli L. Melatonin: a pleiotropic molecule regulating inflammation // Bio-chem. Pharmacol. 2010. Vol. 80. P. 1844–1852.
Reppert S.M. et al. Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor // Proc. Natl. Acad. Sci. USA. 1995. Vol. 92, № 19. P. 8734–8738.
Reppert S.M., Weaver D.R., Ebisawa T. Cloning and characterization of a mammalian melatonin recep-tor that mediates reproductive and circadian responses // Neuron. 1994 Vol. 13, № 5. P. 1177-1185.
Sanchez-Barcelo E.J. et al. Melatonin-estrogen interactions in breast cancer // J. Pineal. Res. 2005. Vol. 38, № 4. P. 217–222.
Shaji A.V., Kulkarni S.K., Agrewala J.N. Regulation of secretion of IL-4 and IgG1 isotype by melatonin-stimulated ovalbuminspecific T cells // Clin. Exp. Immunol. 1998. Vol. 111. P. 181–185.
Shen S. et al. The role of melatonin in the treatment of type 2 diabetes mellitus and Alzheimer's disease // Int. J. Biol. Sci. 2022. Vol. 18, № 3. P. 983−994.
Slominski A.T. et al. RORα and ROR γ are expressed in human skin and serve as receptors for endoge-nously produced noncalcemic 20-hydroxy- and 20,23-dihydroxyvitamin D // FASEB J. 2014. Vol. 28. P. 2775–2789.
Spinedi E., Cardinali D.P. Neuroendocrine-Metabolic Dysfunction and Sleep Disturbances in Neuro-degenerative Disorders: Focus on Alzheimer's Disease and Melatonin // Neuroendocrinology. 2019. Vol. 108, № 4. P. 354−364.
Srinivasan V., Cardinali D.P., Srinivasan U.S. Therapeutic potential of melatonin and its analogs in Par-kinson’s disease: focus on sleep and neuroprotection // Ther. Adv. Neurol. Disord. 2011. Vol. 4. P. 297−317.
Stauch B. et al. Structural basis of ligand recognition at the human MT1 melatonin receptor // Nature. 2019. Vol. 569, № 7755. P. 284–288.
Sun H., Gusdon A.M., Qu S. Effects of melatonin on cardiovascular diseases: progress in the past year // Curr. Opin. Lipidol. 2016. Vol. 27, № 4. P. 408−413.
Tan D.X. et al. Melatonin as a Potent and Inducible Endogenous Antioxidant: Synthesis and Metabolism // Molecules. 2015. Vol. 20, № 10. P. 18886–18906.
Wiesenberg I. et al. Transcriptional activation of the nuclear receptor RZRα by the pineal gland hormone melatonin and dentification of CGP52608 as a synthetic ligand // Nucleic. Acid. Res. 1995. Vol. 23. P. 327–333.
Wu C.C. et al. Melatonin enhances endogenous heme oxygenase-1 and represses immune responses to ameliorate experimental murine membranous nephropathy // J. Pineal. Res. 2012. Vol. 52, № 4. P. 460–469.
Xu L. et al. Melatonin differentially regulates pathological and physiological cardiac hypertrophy: Cru-cial role of circadian nuclear receptor RORα signaling // J. Pineal. Res. 2019. Vol. 67. P. e12579.
Yang X.O. et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR al-pha and ROR gamma // Immunity. 2008. Vol. 28. P. 29–39.
Yoo Y.M. et al. Pharmacological advantages of melatonin in immunosenescence by improving activity of T lymphocytes // J. Biomed. Res. 2016. Vol. 30. P. 314–321.
Zang M. et al. The circadian nuclear receptor RORα negatively regulates cerebral ischemia–reperfusion injury and mediates the neuroprotective effects of melatonin. BBA // Mol. Basis Dis. 2020. Vol. 1866. P. 165890.