OPTIMIZATION OF CULTURE MEDIA FOR AMIDASE CONTAINING BACTERIA

Main Article Content

Юлия/Yuliya Геннадьевна/Gennad'evna Максимова/Maksimova
Анна/Anna Алексеевна/Alekseevna Гарина/Garina
Дмитрий/Dmitry Михайлович/Mikhailovich Васильев/Vasilyev
Александр/Aleksandr Юрьевич/Yur'evich Максимов/Maksimov

Abstract

The growth characteristics of Gram-negative amidase containing bacteria of Acinetobacter guillouiae llh, Pseudomonas monteilii 5, Alcaligenes faecalis 2 under cultivation in the medium with different concentrations of glucose, sucrose, acetamide and sodium acetate as a carbon were studied. The aim of the work was to optimize the synthetic mineral medium by the source of carbon. It has been determined that the best growth substrate for the manifestation of the amidase activity of the strains was acetamide. With a combination of characteristics such as the biomass yield, the economic coefficient of substrate consumption and enzymatic activity, the optimal acetamide concentration for A. guillouiae llh was 0.025 M, for A faecalis 2 - 0.l M. The growth dynamics of A. faecalis 2 on acetamide in different concentrations was studied. It was shown that the 0.025 M acetamide was insufficient for intensive growth of bacteria, and 0.5 M was inhibitory.

Article Details

How to Cite
Максимова/Maksimova Ю. Г., Гарина/Garina А. А., Васильев/Vasilyev Д. М., & Максимов/Maksimov А. Ю. (2018). OPTIMIZATION OF CULTURE MEDIA FOR AMIDASE CONTAINING BACTERIA. Bulletin of Perm University. Biology, (2), 193–199. Retrieved from https://press.psu.ru/index.php/bio/article/view/1853
Section
Микробиология
Author Biographies

Юлия/Yuliya Геннадьевна/Gennad'evna Максимова/Maksimova, Institute of Ecology and Genetics of Microorganism UB RAS; Perm State University

Doctor of biology, Leading Researcher of the Laboratory of Molecular Microbiology and Biotechnology;Associate professor of the Department of Microbiology and Immunology

Анна/Anna Алексеевна/Alekseevna Гарина/Garina, Perm National Research Polytechnic University

Student

Дмитрий/Dmitry Михайлович/Mikhailovich Васильев/Vasilyev, Institute of Ecology and Genetics of Microorganism UB RAS

Candidate of biology, junior scientist of the laboratory of molecular microbiology and biotechnology

Александр/Aleksandr Юрьевич/Yur'evich Максимов/Maksimov, Institute of Ecology and Genetics of Microorganism UB RAS; Perm State University

Candidate of biology, senior scientist of the laboratory of molecular microbiology and biotechnology;Associate professor of the Department of Microbiology and Immunology

References

Дебабов В.Г., Яненко А.С. Биокаталитический гидролиз нитрилов // Обзорный журнал по химии. 2011. Т. 1, № 4. С. 376-394.

Демаков В.А. и др. Бактерии активного ила биологических очистных сооружений, трансформирующие цианопиридины и амиды пиридинкарбоновых кислот // Микробиология. 2015. Т. 84, № 3. С. 369-378.

Ждан-Пушкина С.М. Основы роста культур микроорганизмов: учеб. пособие / под ред. В.П. Гончаровой. Л.: Изд-во Ленингр. ун-та, 1983. 188 с.

Лавров К.В. и др. Новая ациламидаза из Rhodococ-cus erythropolis ТА37, способная гидролизовать N-замещенные амиды // Биохимия. 2010. Т. 75, вып. 8. С. 1111-1119.

Максимова Ю.Г. и др. Трансформация амидов ад-гезированными клетками родококков, обладающими амидазной активностью // Прикладная биохимия и микробиология. 2015. Т. 51, № 1. С. 53-58.

Перцович С.И. и др. Алифатическая амидаза из Rhodococcus rhodochrous - представитель семейства нитрилаз/цианидгидратаз // Биохимия. 2005. Т. 70, № 11. С. 1556-1565.

Полтавская С.В. и др. Разработка и внедрение биокаталитического способа получения акриловой кислоты. I. Выделение штамма Alcaligenes denitrificans, трансформирующего акрилонит-рил в акрилат аммония. Оптимизация среды культивирования // Биотехнология. 2004. № 1. С. 62-70.

Banerjee A., Sharma R., Banerjee U.C. The nitrile degrading enzymes: current status and future prospects // Applied Microbiology and Biotechnology. 2002. Vol. 60. P. 33-44.

Bhatia R.K. et al. Biotransformation of nicotinamide to nicotinyl hydroxamic acid at bench scale by amidase acyl transfer activity of Pseudomonas putida BR-1 // Journal of Molecular Catalysis B: Enzymatic. 2014. Vol. 108. P. 89-95.

Cantarella M. et al. Amidase-catalyzed production of nicotinic acid in batch and continuous stirred membrane reactors // Enzyme and Microbial Technology. 2008. Vol. 42. P. 222-229.

Egorova K. et al. Purification and properties of an enantioselective and thermoactive amidase from the thermophilic actinomycete Pseudonocardia thermophila // Applied Microbiology and Biotechnology. 2004. Vol. 65. P. 38-45.

Fournand D., Bigey F., Arnaud A. Acyl transfer activity of an amidase from Rhodococcus sp. strain R312: formation of a wide range of hydroxamic acids // Applied and Environmental Microbiology. 1998. Vol. 64. P. 2844-2852.

Guo F.-M. et al. Soluble and functional expression of a recombinant enantioselective amidase from Klebsiella oxytoca KCTC 1686 in Escherichia coli and its biochemical characterization // Process Biochemistry. 2015. Vol. 50. P. 1264-1271.

Jebasingh S.E.J. et al. Biodegradation of acrylamide and purification of acrylamidase from newly isolated bacterium Moraxella osloensis MSU11 // International Biodeterioration & Biodegradation. 2013. Vol. 85. P. 120-125.

Jin L.-Q. et al. Efficient biocatalytic hydrolysis of 2-chloronicotinamide for production of 2-chloronicotinic acid by recombinant amidase // Catalysis Communications. 2013. Vol. 38. P. 6-9.

Mehta P.K. et al. Thermostable amidase catalyzed production of isonicotinic acid from isonicotina-mide // Process Biochemistry. 2015. Vol. 50. P. 1400-1404.

Mehta P.K. et al. Enhanced production of thermostable amidase from Geobacillus subterraneus RL-2a MTCC 11502 via optimization of physicochemical parameters using Taguchi DOE methodology // 3 Biotech. 2016. Vol. 6. P. 66.

Nojiri M., Taoka N., Yasohara Y. Characterization of an enantioselective amidase from Cupriavidus sp. KNK-J915 (FERM BP-10739) useful for enzymatic resolution of racemic 3-piperi-dinecarboxamide // Journal of Molecular Catalysis B: Enzymatic. 2014. Vol. 109. P. 136-142.

Prasad S., Sharma D.R., Bhalla T.C. Nitrile- and amide hydrolysing activity in Kluyveromyces thermo-tolerans MGBY 37 // World Journal of Microbiology and Biotechnology. 2005. Vol. 21. P. 14471450.

Ruan L.-T. et al. Purification and characterization of R-stereospecific amidase from Brevibacterium epidermidis ZJB-07021 // International Journal of Biological Macromolecules. 2016. Vol. 86. P. 893-900.

Sharma M., Sharma N.N., Bhalla T.C. Amidases: versatile enzymes in nature // Reviews in Environmental Science and Bio/Technology. 2009. Vol. 8. P. 343-366.

Wu Z.-M., Zheng R.-C., Zheng Y.-G. Exploitation and characterization of three versatile amidase super-family members from Delftia tsuruhatensis ZJB-05174 // Enzyme and Microbial Technology. 2016. Vol. 86. P. 93-102.

Wu Z.-M., Zheng R.-C., Zheng Y.-G. Identification and characterization of a novel amidase signature family amidase from Parvibaculum lavamentivorans ZJB14001 // Protein Expression and Purification. 2017. Vol. 129. P. 60-68.

Zheng R.-C. et al. Industrial production of chiral intermediate of cilastatin by nitrile hydratase and amidase catalyzed one-pot, two-step biotransformation // Journal of Molecular Catalysis B: Enzymatic. 2014. Vol. 102. P. 161-166.

References

Debabov V.G., Yanenko A.S. [Biocatalytic hydrolysis of nitriles]. Obzornyj zurnal po chimii, V. 1, N 4 (2011): pp. 385-402. (In Russ.).

Demakov V.A. et al. [Activated sludge bacteria transforming cyanopyridines and amides of pyridine-carboxylic acids]. Microbiologija, V. 84, N 3 (2015): pp. 433-441. (In Russ.).

Zhdan-Pushkina S.M. Osnovy rosta kul'tur mikroor-ganizmov [Fundamentals of the growth of cultures of microorganisms. Textbook]. Leningrad, Leningrad Universitet Publ., 1983, 188 p. (In Russ.).

Lavrov K.V. et al. [A new acylamidase from Rhodococcus erythropolis TA37 can hydrolyze N-substituted amides]. Biochimija, V. 75, N 8 (2010): pp. 1006-1013. (In Russ.).

Maksimova Yu.G. et al. [Transformation of amides by adherent rhodococcus cells possessing amidase activity]. Prikladnaja biochimij i microbiologija, V. 51, N 1 (2015): pp. 64-69. (In Russ.).

Pertsovich S.I. et al. [Aliphatic amidase from Rhodococcus rhodochrous M8 is related to the ni-trilase/cyanide hydratase family]. Biochimija, V. 70, N 11 (2005): pp. 1280-1287. (In Russ.).

Poltavskaya S.V. et al. [Development and introduction of a biocatalytic process for the production of acrylic acid. I. Isolation of the strain of Alcali-genes denitrificans, transforming acrylonitrile into ammonium acrylate. Optimization of the culture medium]. Biotechnologija, N 1 (2004): pp. 62-70. (In Russ.)

Banerjee A., Sharma R., Banerjee U.C. The nitrile degrading enzymes: current status and future prospects. Applied Microbiology and Biotechnology, V. 60 (2002): pp. 33-44.

Bhatia R.K. et al. Biotransformation of nicotinamide to nicotinyl hydroxamic acid at bench scale by amidase acyl transfer activity of Pseudomonas putida BR-1. Journal of Molecular Catalysis B: Enzymatic, V. 108 (2014): pp. 89-95.

Cantarella M. et al. Amidase-catalyzed production of nicotinic acid in batch and continuous stirred membrane reactors. Enzyme and Microbial Technology,, V. 42 (2008): pp. 222-229.

Egorova K. et al. Purification and properties of an en-antioselective and thermoactive amidase from the thermophilic actinomycete Pseudonocardia ther-mophila. Applied Microbiology and Biotechnology,, V. 65 (2004): pp. 38-45.

Fournand D., Bigey F., Arnaud A. Acyl transfer activity of an amidase from Rhodococcus sp. strain R312: formation of a wide range of hydroxamic acids. Applied and Environmental Microbiology, V. 64 (1998): pp. 2844-2852.

Guo F.-M. et al. Soluble and functional expression of a recombinant enantioselective amidase from Klebsiella oxytoca KCTC 1686 in Escherichia coli and its biochemical characterization. Process Biochemistry, V. 50 (2015): pp. 1264-1271.

Jebasingh S.E.J. et al. Biodegradation of acrylamide and purification of acrylamidase from newly isolated bacterium Moraxella osloensis MSU11. International Biodeterioration & Biodegradation, V. 85 (2013): pp. 120-125.

Jin L.-Q. et al. Efficient biocatalytic hydrolysis of 2-chloronicotinamide for production of 2-chloronicotinic acid by recombinant amidase. Catalysis Communications, V. 38 (2013): pp. 6-9.

Mehta P.K. et al. Thermostable amidase catalyzed production of isonicotinic acid from isonicotina-mide. Process Biochemistry, V. 50 (2015): pp. 1400-1404.

Mehta P.K. et al. Enhanced production of thermostable amidase from Geobacillus subterraneus RL-2a MTCC 11502 via optimization of physicochemi-cal parameters using Taguchi DOE methodology. 3 Biotech., V. 6 (2016): pp. 66.

Nojiri M., Taoka N., Yasohara Y. Characterization of an enantioselective amidase from Cupriavidus sp. KNK-J915 (FERM BP-10739) useful for enzymatic resolution of racemic 3-piperidinecarboxamide. Journal of Molecular Catalysis B: Enzymatic, V. 109 (2014): pp. 136-142.

Prasad S., Sharma D.R., Bhalla T.C. Nitrile- and amide hydrolysing activity in Kluyveromyces thermo-tolerans MGBY 37. World Journal of Microbiology and Biotechnology, V. 21, (2005): pp. 14471450.

Ruan L.-T. et al. Purification and characterization of R-stereospecific amidase from Brevibacterium epider-midis ZJB-07021. International Journal of Biological Macromolecules, V. 86 (2016): pp. 893-900.

Sharma M., Sharma N.N., Bhalla T.C. Amidases: versatile enzymes in nature. Reviews in Environmental Science and Bio/Technology, V. 8 (2009): pp. 343-366.

Wu Z.-M., Zheng R.-C., Zheng Y.-G. Exploitation and characterization of three versatile amidase su-perfamily members from Delftia tsuruhatensis ZJB-05174. Enzyme and Microbial Technology, V. 86 (2016): pp. 93-102.

Wu Z.-M., Zheng R.-C., Zheng Y.-G. Identification and characterization of a novel amidase signature family amidase from Parvibaculum lavamen-tivorans ZJB14001. Protein Expression and Purification, V. 129 (2017): pp. 60-68.

Zheng R.-C. et al. Industrial production of chiral intermediate of cilastatin by nitrile hydratase and amidase catalyzed one-pot, two-step biotransformation. Journal of Molecular Catalysis B: Enzymatic, V. 102 (2014): pp. 161-166.

Most read articles by the same author(s)