НАКОПЛЕНИЕ ПОЛИГИДРОКСИАЛКАНОАТОВ В КЛЕТКАХ РОДОКОККОВ ПРИ НЕСБАЛАНСИРОВАННОМ РОСТЕ

##plugins.themes.bootstrap3.article.main##

Юлия/Yuliya Геннадьевна/Gennad'evna Максимова/Maksimova
Елена/Elena Юрьевна/Yur'evna Бурлуцкая/Burlutskaya

Аннотация

Определено общее содержание полигидроксиалканоатов (ПГА) в клетках штаммов бактерий рода Rhodococcus при периодическом двустадийном росте на полноценной и лимитированной по источнику азота или фосфора среде культивирования с разными источниками углерода. Методом фазо-во-контрастной световой микроскопии изучена морфология бактериальных клеток при несбалансированном росте. Не было обнаружено значимых различий в накоплении этих запасных питательных веществ как при росте изученных штаммов на разных источниках углерода, так и на средах, лимитированных по азоту или фосфору. Показано, что R. ruber П5-8 накапливает наибольшее количество ПГА на среде, лимитированной по фосфору, при росте на бутирате и ацетате натрия в качестве источника углерода - 312.5 и 466.7 мкг/мг соответственно. При росте R. ruber П5-8 на среде, дефицитной по азоту, отмечается заметное изменение морфологии, которое выражается в неравномерных утолщениях клеток. Наибольшее накопление биомассы R. ruber П5-8 (до 9.4 мг АСБ/мл) наблюдается при росте на среде, лимитированной по фосфору, с бутиратом натрия в качестве источника углерода.

##plugins.themes.bootstrap3.article.details##

Как цитировать
Максимова/Maksimova Ю. Г., & Бурлуцкая/Burlutskaya Е. Ю. (2018). НАКОПЛЕНИЕ ПОЛИГИДРОКСИАЛКАНОАТОВ В КЛЕТКАХ РОДОКОККОВ ПРИ НЕСБАЛАНСИРОВАННОМ РОСТЕ. Вестник Пермского университета. Серия Биология, (4), 344–350. извлечено от https://press.psu.ru/index.php/bio/article/view/1771
Раздел
Микробиология
Биографии авторов

Юлия/Yuliya Геннадьевна/Gennad'evna Максимова/Maksimova, ФГБУН Институт экологии и генетики микроорганизмов УрО РАН

Доктор биологических наук, старший научный сотрудник лаборатории молекулярной микробиологии и биотехнологии

Елена/Elena Юрьевна/Yur'evna Бурлуцкая/Burlutskaya, ФГБОУВО «Пермский государственный национальный исследовательский университет»

Аспирант

Библиографические ссылки

Бояндин А.К. и др. Синтез резервных полигидроксиалканоатов светящимися бактериями // Микробиология. 2008. Т. 77, № 3. С. 364-369.

Волова Т.Г. и др. Биосинтез многокомпонентных полигидроксиалканоатов бактериями Wautersia eutropha II Микробиология. 2007. Т. 76, № 6. С. 797-804.

Волова Т.Г., Шишацкая Е.И. Разрушаемые биополимеры: получение, свойства, применение. Красноярск, 2011. 392 с.

Ившина И.Б. и др. Биокатализаторы многофункционального назначения на основе ресурсного потенциала коллекции алканотрофов // Инновационные биотехнологии в странах ЕвраАзЭС. Минск, 2011. С. 105-119.

Ившина И.Б., Пшеничнов Р.А., Оборин А.А. Пропанокисляющие родококки. Свердловск, 1987. 125 с. Осипоеа И.А., Ремезовская КБ.,

Максимов А.Ю. Биотрансформации, катализируемые эстеразами в гетерогенных системах // Российский иммунологический журнал. 2015. Т. 9(18), № 2(1). С. 744-746.

Соляникова К.К. и др. Бактерии рода Rhodococcus -перспективные деструкторы устойчивых поллютантов для очистки сточных вод // Вода: химия и экология. 2010. № 4. С. 18-26.

Anderson A.J., Dawes Е.А. Occurrence, metabolism, metabolic role, and industrial uses of bacterial poly-hydroxyalkanoates // Microbiological reviews. 1990. Vol. 54, № 4. P. 450-172.

Anderson A.J. et al. Biosynthesis of poIy(3-hydroxybutyrate-co-3-hydroxyvalerate) in Rhodococcus ruber II Canadian Journal of Microbiology. 1995. Vol. 41 (Suppl. I). P. 4-13.

Bengtsson S. et al. Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater // Bioresource Technology. 2008. Vol. 99, № 3. P. 509-516.

Biros Y. et al. Effect of acetate to biomass ratio on simultaneous polyhydroxybutyrate generation and direct microbial growth in fast growing microbial culture // Bioresource Technology. 2014. Vol. 171. P. 314-322.

Cavaillé L. et al. Polyhydroxybutyrate production by direct use of waste activated sludge in phosphorus-limited fed-batch culture // Bioresource Technology. 2013. Vol. 149. P. 301-309.

Cha S.-h. et al. Characterization of polyhydroxyalkanoates extracted from wastewater sludge under different environmental conditions // Biochemical Engineering Journal. 2016. Vol. 112. P. 1-12.

Colombo B. et al. Polyhydroxyalkanoates (PHAs) production from fermented cheese whey by using a mixed microbial culture // Bioresource Technology. 2016. Vol. 218. P. 692-699.

Dalai J. et al. Evaluation of bacterial strains isolated from oil-contaminated soil for production of polyhydroxyalkanoic acids (PHA) // Pedobiologia. 2010. Vol. 54, № 1. P. 25-30.

Hernández MA. et al. Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identificationof genes involved in their metabolism // BMC Genomics. 2008. Vol. 9. P. 600-614.

Ke Y. et al. Reactive blends based on polyhydroxyalkanoates: Preparation and biomedical application // Materials Science and Engineering C. 2016. URL: http://dx.doi.Org/10.1016/j.msec.2016.03.114.

Kim T.-W., Park J.-S., Lee Y.-H. Enzymatic characteristics of biosynthesis and degradation of poly-(3-hydroxybutyrate of Alcaligenes latus II Journal of Microbiology and Biotechnology. 1996. Vol. 6, № 6. P. 425-131.

Lee II'.S. et al. Strategy for the biotransformation of fermented palm oil mill effluent into biodegradable polyhydroxyalkanoates by activated sludge // Chemical Engineering Journal. 2015. Vol. 269. P. 288-297.

Manna A., Banerjee R., Paul A.K. Accumulation of poly(3-hydroxybutyric acid) by some soil Streptomy-ces // Current Microbiology. 1999. Vol. 39, № 3. P. 153-158.

Matías F. et al. Polyhydroxyalkanoates production by actinobacteria isolated from soil // Canadian Journal of Microbiology. 2009. Vol. 55. P. 790-800.

Marang L. et al. Butyrate as preferred substrate for polyhydroxybutyrate production // Bioresource Technology. 2013. Vol. 142. P. 232-239.

Mozejko-Ciesielska J., Kiewisz R. Bacterial polyhydroxyalkanoates: Still fabulous? // Microbiological Research. 2016. Vol. 192. P. 271-282.

Nishioka M. et al. Production of poly-ß-hydroxybutyrate by thermophilic cyanobacterium, Synechococcus sp. MA19, under phosphate-limited conditions // Biotechnology Letters. 2001. Vol. 23, № 14. P. 1095-1099.

Panda B., SharmaL., MallickN. Poly-ß-hydroxybutyrate accumulation in Nostoc muscorum and Spirulina platensis under phosphate limitation // Journal of Plant Physiology. 2005. Vol. 162, № 12. P. 1376-1379.

de Philippis R. et al. Factors affecting poly-ß-hydroxybutyrate accumulation in cyanobacteria and in purple non-sulfur bacteria // FEMS Microbiology Reviews. 1992. Vol. 103, № 2-4. P. 187-194.

Pieper U., Steinbüchel A.. Identification, cloning and sequence analysis of the poly(3-hydroxyalkanoic acid) synthase gene of the gram-positive bacterium Rhodococcus ruber II FEMS Microbiology Letters. 1992. Vol. 75, № 1. P. 73-79.

Quillaguamtan J. et al. Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and fiiture prospects // Applied Microbiology and Biotechnology. 2010. Vol. 85, № 6. P. 1687-1696.

Ratcliff W.C., Kadam S.V., Denison R.F. Poly-3-hydr-oxybutyrate (PHB) supports survival and reproduction in starving rhizobia // FEMS Microbiology Ecology. 2008. Vol. 65, № 3. P. 391-399.

Saharan B.S., Grewal A., Kumar P. Biotechnological production of polyhydroxyalkanoates: a review on trends and latest developments // Chinese Journal of Biology. 2014. URL: http://dx.doi.org/10.1155/2014/ 802984.

Sudesh K., Abe II., Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters // Progress in Polymer Science. 2000. Vol. 25. P. 1503-1555.

Trainer M.A., Charles T.C. The role of PHB metabolism in the symbiosis of rhizobia with legumes // Applied Microbiology and Biotechnology. 2006. Vol. 71, № 4. P. 377-386.

Venkateswar Reddy M. et al. Pseudomonas otitidis as a potential biocatalyst for polyhydroxyalkanoates (PHA) synthesis using synthetic wastewater and acidogenic effluents // Bioresource Technology. 2012. Vol. 123. P. 471-179.

Venkateswar Reddy M, Venkata Mohan S. Influence of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production from food waste and acidogenic effluents using aerobic consortia // Bioresource Technology. 2012. Vol. 103, № 1. P. 313-321.

References

Boyandin A.N. et al. [Synthesis of reserve polyhydroxyalkanoates by luminous bacteria]. Microbiologija. V. 77 No. 3 (2008): pp. 364-369. (In Russ.)

Volova T.G. et al. [Biosynthesis of multicomponent polyhydroxyalkanoates by Wautersia eutropha], Microbiologija. V. 76 No. 6 (2007): pp 797-804. (In Russ.)

Volova T.G., Shishatskaya E.I. Razrusaemye polimery: polucenie, svojstva, primenenie [Destructible bio-polymers: production, properties, applications]. Krasnoyarsk, 2011. 392p. (In Russ.)

Ivshina I.B. et al. [Multi-purpose biocatalysts based on resource potential of alcanotrophic's collection], In-novacionnje biotechnologii v stranach EvrAzES [Innovative biotechnology in EurAsEC countries]. Minsk, 2011, pp. 105-119. (In Russ.)

Ivshina I.B., Pshenichnov RA., Oborin A.A. Propanok-isljajuscie rodokokki [Propane oxidising Rhodococcus]. Sverdlovsk, 1987. 125 p. (In Russ.)

Osipova I.A., Remezovskaya N.B., Maksimov A.Yu. [Esterase-catalyzed biotransformation in heterogeneous systems] Rossijskij immunologiceskij zurnal. V. 9(18) No. 2(1) (2015): pp. 744-746. (In Russ.)

Solyanikova I.P. et al. [Bacteria of the Rhodococcus genus - promising destructors of stable pollutants for sewage treatment]. Voda: chimija i ékologija. No. 4 (2010): pp. 18-26. (In Russ.)

Anderson A.J., Dawes E.A. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiological reviews. V. 54 No. 4 (1990): pp. 450-472.

Anderson A.J., Williams D.R, Dawes E.A., Ewing D.F. Biosynthesis of poIy(3-hydroxybutyrate-co-3-hydr-oxyvalerate) in Rhodococcus rubber. Canadian Journal of Microbiology. V. 41 (Suppl. I) (1995): pp. 4-13.

Bengtsson S., Werker A., Christensson M., Welander T. Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater. Bioresource Technology. V. 99 No. 3 (2008): pp. 509-516.

Biros Y., Cokgor E.U., YaDci N, Pala-Ozkok I., Cakar Z.P., Sozen S., Orhon D. Effect of acetate to biomass ratio on simultaneous polyhydroxybutyrate generation and direct microbial growth in fast growing microbial culture. Bioresource Technology. V. 171 (2014): pp. 314-322.

Cavaillé L., Grousseau E., Pocquet M., Lepeuple A.-S., Uribelarrea J.-L., Hernandez-Raquet G., Paul E. Polyhydroxybutyrate production by direct use of waste activated sludge in phosphorus-limited fed-batch culture. Bioresource Technology. V. 149 (2013): pp. 301-309.

Cha S.-h., Son J.-h., Jamal Y., Zafar M., Park H.-s. Characterization of polyhydroxyalkanoates extracted from wastewater sludge under different environmental conditions. Biochemical Engineering Journal. V. 112 (2016): pp. 1-12.

Colombo B. et al. Polyhydroxyalkanoates (PHAs) production from fermented cheese whey by using a mixed microbial culture. Bioresource Technology. V. 218 (2016): pp. 692-699.

Dalai J., Sarma P.M., Lavania M., Mandal A.K., Lai B. Evaluation of bacterial strains isolated from oil-contaminated soil for production of polyhydroxyalkanoic acids (PHA). Pedobiologia. V. 54 No. 1 (2010): pp. 25-30.

Hernández M.A. et al. Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global iden-tificationof genes involved in their metabolism. BMC Genomics. V. 9 (2008): pp. 600-614.

Ke Y. et al. Reactive blends based on polyhydroxyalkanoates: Preparation and biomedical application. Materials Science and Engineering C. 2016. http://dx.doi.Org/10.1016/j.msec.2016.03.114.

Kim T.-W., Park J.-S., Lee Y.-H. Enzymatic characteristics of biosynthesis and degradation of polv-ß-hydroxybutyrate of Alcaligenes latus. Journal of Microbiology and Biotechnology. V. 6 No. 6 (1996): pp. 425-431.

Lee W.S., Chua A.S.M., Yeoh H.K., Nittami T., Ngoh G.C. Strategy for the biotransformation of fermented palm oil mill effluent into biodegradable polyhydroxyalkanoates by activated sludge. Chemical Engineering Journal. V. 269 (2015): pp. 288-297.

Manna A., Baneijee R., Paul A.K. Accumulation of poly(3-hydroxybutyric acid) by some soil Streptomy-ces. Current Microbiology. V. 39 No. 3 (1999): pp. 153-158.

Matias F., Bonatto D., Padilla G., de Andrade Rodrigues M.F., Henriques J.A.P. Polyhydroxyalkanoates production by actinobacteria isolated from soil. Canadian Journal of Microbiology. V. 55 (2009): pp. 790-800.

Marang L., Jiang Y., van Loosdrecht M.C.M., Kleere-bezem R. Butyrate as preferred substrate for polyhydroxybutyrate production. Bioresource Technology. V. 142 (2013): pp. 232-239.

Mozejko-Ciesielska J., Kiewisz R. Bacterial polyhydroxyalkanoates: Still fabulous? Microbiological Research. V. 192 (2016): pp. 271-282.

Nishioka M., Nakai K., Miyake M., Asada Y., Taya M. Production of poly-ß-hydroxybutyrate by thermophilic cyanobacterium, Synechococcus sp. MA19, under phosphate-limited conditions. Biotechnology Letters. V. 23 No. 14 (2001): pp. 1095-1099.

Panda B., Sharma L., Mallick N. Poly-ß-hydroxybutyrate accumulation in Nostoc muscorum and Spirulina platensis under phosphate limitation. Journal of Plant Physiology. V. 162 No. 12 (2005): pp. 1376-1379.

de Philippis R, Ena A., Guastini M., Sili C., Vincenzini M. Factors affecting poly- ß -hydroxybutyrate accumulation in cyanobacteria and in purple non-sulfur bacteria. FEMSMicrobiology Reviews. V. 103 No. 2-4 (1992): pp. 187-194.

Pieper U., Steinbüchel A. Identification, cloning and sequence analysis of the poly(3-hydroxyalkanoic acid) synthase gene of the gram-positive bacterium Rhodococcus rubber. FEMS Microbiology Letters. V. 75 No. 1 (1992): pp. 73-79.

Quillaguamran J., Guzmran H., Van-Thuoc D., Hatti-Kaul R. Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and luture prospects. Applied Microbiology and Biotechnology. V. 85 No. 6. 2010. P. 1687-1696.

Ratcliff W.C., Kadam S.V., Denison RF. Poly-3-hydroxybutyrate (PHB) supports survival and reproduction in starving rhizobia. FEMS Microbiology Ecology. V. 65 No 3 (2008): pp.391-399.

Saharan B.S., Grewal A., Kumar P. Biotechnological production of polyhydroxyalkanoates: a review on trends and latest developments. Chinese Journal of Biology. 2014. http://dx.doi.org/10.1155/2014/802984

Sudesh K, Abe H., Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Progress in Polymer Science. V. 25 (2000): pp. 1503-1555.

Trainer M.A., Charles T.C. The role of PHB metabolism in the symbiosis of rhizobia with legumes. Applied Microbiology and Biotechnology. V. 71 No. 4. (2006): pp. 377-386.

Venkateswar Reddy M., Nikhil G.N., Venkata Mohan S., Swamy Y.V., Sarma P.N. Pseudomonas otitidis as a potential biocatalyst for polyhydroxyalkanoates (PHA) synthesis using synthetic wastewater and aci-dogenic effluents. Bioresource Technology. V. 123 (2012): pp. 471-479.

Venkateswar Reddy M., Venkata Mohan S. Influence of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production from food waste and acidogenic effluents using aerobic consortia. Bioresource Technology. V. 103 No. 1 (2012): pp. 313-321.

Наиболее читаемые статьи этого автора (авторов)