Phthalate-degrading strain Stutzerimonas sp. SJ1gcor from soil in the coastal zone of a technogenic saline-alkaline reservoir

Main Article Content

Yulia I. Nechaeva
Anna A. Pyankova
Elena G. Plotnikova

Abstract

Haloalkaline environments are of particular interest for research, as they are characterized by a unique diversity of extremophilic microorganisms that are adapted to high salinity and alkalinity. Among these extremophilic microorganisms, strains that degrade various aromatic and aliphatic compounds, which have detrimental effects on ecosystems and human health, deserve special attention. Strain SJ1gcor, identified as a member of the genus Stutzerimonas, was isolated from the coastal soil of a technogenic saline-alkaline reservoir located within the Verkhnekamsk potassium-magnesium salt deposit (Berezniki, Perm Krai). Analysis of the 16S rRNA gene of the studied strain revealed the highest level of similarity (99.69%) to the homologous gene of Stutzerimonas zhaodongensis NEAU-ST5-21T. The strain is capable of growing as a sole source of carbon and energy on phthalates: dibutyl phthalate (DBP) and dimethyl phthalate (DMP), as well as the possible degradation products of these compounds: ortho-phthalic acid (OPA), benzoic acid (BA) and butanol. It was demonstrated that the strain is capable of growing on DBP as a substrate with a NaCl content of up to 70 g/L in the culture medium. The highest specific growth rate of the strain SJ1gcor was found when cultivating in a medium containing 30 g/L NaCl, and the maximum optical density was recorded in a medium containing 70 g/L NaCl. The benA gene encoding the α-subunit of benzoate 1,2-dioxygenase, a key enzyme in BA degradation, was identified in the strain's genome. Based on the data obtained, two alternative DBP degradation pathways were proposed for the strain SJ1gcor. Therefore, the strain Stutzerimonas sp. SJ1gcor is of interest for further research and holds promise for biotechnological applications.

Article Details

How to Cite
Nechaeva Ю. И., Pyankova А. А., & Plotnikova Е. Г. (2025). Phthalate-degrading strain Stutzerimonas sp. SJ1gcor from soil in the coastal zone of a technogenic saline-alkaline reservoir. Bulletin of Perm University. Biology, (4), 415–423. https://doi.org/10.17072/1994-9952-2025-4-415-423
Section
Микробиология

References

Белкин П.А. Химический состав родникового стока в районе складирования отходов разработки и обогащения калийных солей // Вестник Пермского университета. Геология. 2020. Т. 19(3). С. 232−240. DOI: 10.17072/psu.geol.19.3.232. EDN: DMUFJO.

Егорова Д.О. и др. Деструкция ароматических углеводородов штаммом Rhodococcus wratislaviensis KT112-7, выделенным из отходов соледобывающего предприятия // Прикладная биохимия и микробио-логия. 2013. Т. 49(3). С. 267−278. DOI: 10.7868/S0555109913030070. EDN: PXPZZB.

Методы общей бактериологии: в 3 т. / под ред. Ф. Герхардта и др. М.: Мир, 1983. Т. 1–3.

Нетрусов А.И. Практикум по микробиологии. М.: Академия, 2005. 608 с.

Ausbel F.M. Short Protocols in Molecular Biology. 3rd ed. N.Y.: John Wiley & Sons, 1995. 450 p.

Baggi G. et al. Co-metabolism of di-and trichlorobenzoates in a 2-chlorobenzoate-degrading bacterial cul-ture: Effect of the position and number of halo-substituents // International Biodeterioration & Biodegradation. 2008. Vol. 62(1). P. 57−64. DOI: 10.1016/j.ibiod.2007.12.002.

Belkin P. et al. Sediment microbial communities of a technogenic saline-alkaline reservoir // Heliyon. 2024. Vol. 10(13). Art. e33640. DOI: 10.1016/j.heliyon.2024.e33640.

Benjamin S. et al. A monograph on the remediation of hazardous phthalates // Journal of Hazardous Ma-terials. 2015. Vol. 298. P. 58−72. DOI: 10.1016/j.jhazmat.2015.05.004.

Chen F. et al. High-efficiency degradation of phthalic acid esters (PAEs) by Pseudarthrobacter defluvii E5: performance, degradative pathway, and key genes // Science of the Total Environment. 2021. Vol. 794. Art. 148719. DOI: 10.1016/j.scitotenv.2021.148719.

Hu R. et al. Bacteria-driven phthalic acid ester biodegradation: current status and emerging opportunities // Environment International. 2021. Vol. 154. Art. 106560. DOI: 10.1016/j.envint.2021.106560.

Kaur R. et al. Biodegradation of phthalates and metabolic pathways: an overview // Environmental Sus-tainability. 2023. Vol. 6. P. 303–318. DOI: 10.1007/s42398-023-00268-7.

Khodaei K. et al. BTEX biodegradation in contaminated groundwater using a novel strain (Pseudomo-nas sp. BTEX-30) // International Biodeterioration & Biodegradation. 2017. Vol. 116. P. 234−242. DOI: 10.1016/j.ibiod.2016.11.001.

Khurshid S. et al. Di-butyl phthalates (DBP) in the environment: health risks and advances in treatment technologies // Environ. Geochem. Health. 2025. Vol. 47. Art. 371. DOI: 10.1007/s10653-025-02707-2.

Lakshmikandan M. et al. Efficient biodegradation of elevated di-n-butyl phthalate levels by microalga Coelastrella terrestris MLUN1 and its post-treatment potential // Journal of Water Process Engineering. 2025. Vol. 73. Art. 107694. DOI: 10.1016/j.jwpe.2025.107694.

Lane D.J. 16S/23S rRNA sequencing // Nucleic acid techniques in bacterial systematics. 1991. P. 115−175.

Mahajan R. et al. Biodegradation of di‑n‑butyl phthalate by psychrotolerant Sphingobium yanoikuyae strain P4 and protein structural analysis of carboxylesterase involved in the pathway // International Journal of Biological Macromolecules. 2019. Vol. 122. P. 806−816. DOI: 10.1016/j.ijbiomac.2018.10.225.

Parales R.E., Resnick S.M. Aromatic ring hydroxylating dioxygenases // Pseudomonas: Volume 4 Molec-ular Biology of Emerging Issues. Boston, MA: Springer US, 2006. P. 287−340.

Peng C. et al. Biodegradation of various phthalic acid esters at high concentrations by Gordonia alkan-ivorans GH-1 and its degradation mechanism // Environmental Technology & Innovation. 2025. Vol. 38. Art. 104066. DOI: 10.1016/j.eti.2025.104066.

Qiao Y. et al. Novel agents consisting of Pseudomonas zhaodongensis and dimethylsulfoniopropionate (DMSP) enhancing bioremediation of oil-contaminated sediments at deep-sea condition // Environmental Tech-nology & Innovation. 2024. Vol. 36. Art. 103744. DOI: 10.1016/j.eti.2024.103744.

Raymond R.L. Microbial oxidation of n-paraffinic hydrocarbons // Developments in Industrial Microbi-ology. 1961. Vol. 2(1). P. 23−32.

Ren C. et al. Complete degradation of di-n-butyl phthalate by Glutamicibacter sp. strain 0426 with a novel pathway // Biodegradation. 2024. Vol. 35(1). P. 87−99. DOI: 10.1007/s10532-023-10032-7.

Ren L. et al. Bacteria-mediated phthalic acid esters degradation and related molecular mechanisms // Applied Microbiology and Biotechnology. 2018. Vol. 102(3). P. 1085–1096. DOI: 10.1007/s00253-017-8687-5.

Sharma N. et al. DBP biodegradation kinetics by Acinetobacter sp. 33F in pristine agricultural soil // Envi-ronmental Technology & Innovation. 2021. Vol. 21. Art. 101240. DOI: 10.1016/j.eti.2020.101240.

Varshney S., Bhattacharya A., Gupta A. Halo-alkaliphilic microbes as an effective tool for heavy metal pollution abatement and resource recovery: challenges and future prospects // 3 Biotech. 2023. Vol. 13(12). Art. 400. DOI: 10.1007/s13205-023-03807-5.

Wang Y., Qian H. Phthalates and their impacts on human health // Healthcare (Basel). 2021. Vol. 9(5). Art. 603. DOI: 10.3390/healthcare9050603.

Xu W. et al. Bacterial communities and culturable petroleum hydrocarbon degrading bacteria in marine sediments in the northeastern South China Sea // Frontiers in Environmental Sciences. 2022. Vol. 10. Art. 865636. DOI: 10.3389/fenvs.2022.865636.

Yadav A.N., Saxena A.K. Biodiversity and biotechnological applications of halophilic microbes for sus-tainable agriculture // Journal of Applied Biology and Biotechnology. 2018. Vol. 6(1). P. 48−55. DOI: 10.7324/JABB.2018.60109.

Zhang H. et al. Purification and properties of a novel quizalofop-p-ethyl-hydrolyzing esterase involved in quizalofop-p-ethyl degradation by Pseudomonas sp. J-2 // Microbial Cell Factories. 2017. Vol. 16. Art. 80. DOI: 10.1186/s12934-017-0695-8.

Zhang L. et al. Pseudomonas zhaodongensis sp. nov., isolated from saline and alkaline soils // Interna-tional Journal of Systematic and Evolutionary Microbiology. 2015. Vol. 65(Pt 3). P. 1022−1030. DOI: 10.1099/ijs.0.000057.

Zhao Z. et al. Diversity and potential metabolic characteristics of culturable copiotrophic bacteria that can grow on low-nutrient medium in Zhenbei Seamount in the South China Sea // Microbial Ecology. 2024. Vol. 87. Art. 157. DOI: 10.1007/s00248-024-02475-z.

Most read articles by the same author(s)