Анализ влияния бифенила, хлор/хлоргидроксибифенилов и продуктов их биотрансформации на иммунный ответ и морфофункциональное состояние печени

##plugins.themes.bootstrap3.article.main##

Сергей Владимирович Гейн
Дарья Олеговна Егорова
Николай Александрович Королев
Наталья Павловна Логинова
Татьяна Ивановна Горбунова
Елизавета Сергеевна Наговицина

Аннотация

Установлено, что бифенил и ПХБ 12 (3,4-дихлорбифенил) угнетали гуморальный иммунитет, снижая количество антителообразующих клеток в селезенке. После микробной деградации исследуемых соединений штаммом Rhodococcus ruber 25 в течение 7 и 14 сут метаболиты ПХБ 12 и бифенила продолжали оказывать угнетающее влияние на количество антителообразующих клеток. Смесь Р, представляющая собой смесь хлорированных и гидроксилированных производных бифенила, не влияла на гуморальный ответ, но стимулировала клеточноопосредованный ответ, этот эффект нивелировался после микробной деградации. Гистологические исследования показали, что бифенил, ПХБ 12 и смесь Р в печени приводили к развитию хронического гепатита с признаками жировой и очаговой гидропической (центролобулярной) дистрофии гепатоцитов. Имелась реакция со стороны сосудов в виде полнокровия с признаками гемолиза эритроцитов. Наблюдались явления периваскулярной лимфогистиоцитарной инфильтрации. Под воздействием метаболитов, образованных в процессе деградации исследуемых соединений штаммом R. ruber Р25 в течении 7−14 дней, в печени сохранялись дистрофические изменения в гепатоцитах (без некровоспалительной реакции), и развивались признаки репаративной регенерации.

##plugins.themes.bootstrap3.article.details##

Как цитировать
Гейн, С. В., Егорова, Д. О., Королев, Н. А., Логинова, Н. П., Горбунова, Т. И., & Наговицина, Е. С. (2025). Анализ влияния бифенила, хлор/хлоргидроксибифенилов и продуктов их биотрансформации на иммунный ответ и морфофункциональное состояние печени. Вестник Пермского университета. Серия Биология, (1), 103–115. https://doi.org/10.17072/1994-9952-2025-1-103-115
Раздел
Иммунология
Биографии авторов

Сергей Владимирович Гейн, Институт экологии и генетики микроорганизмов УрО РАН – филиал ПФИЦ УрО РАН, Пермь, Россия

Д-р мед. наук, профессор

Дарья Олеговна Егорова, Институт экологии и генетики микроорганизмов УрО РАН – филиал ПФИЦ УрО РАН, Пермь, Россия

Д-р биол. наук, доцент, с.н.c.

Николай Александрович Королев, Институт экологии и генетики микроорганизмов УрО РАН – филиал ПФИЦ УрО РАН, Пермь, Россия

Аспирант

Наталья Павловна Логинова, Пермский государственный медицинский университет им. Е.А. Вагнера, Пермь, Россия

Д-р мед. наук

Татьяна Ивановна Горбунова, Институт органического синтеза им. И.Я. Постовского УрО РАН, Екатеринбург, Россия

Д-р хим. наук

Елизавета Сергеевна Наговицина, Пермский государственный национальный исследовательский университет, Пермь, Россия

Магистрант

Библиографические ссылки

Европейская конвенция по защите позвоночных животных, используемых для экспериментальных и других научных целей // Страсбург, 1986. URL: https://rm.coe.int/168007a6a8.

Егорова Д.О. и др. Моделирование структуры α-субъединицы бифенил диоксигеназы штаммов ро-да Rhodococcus и особенности деструкции хлорированных- и гидроксилированных бифенилов при раз-личных температурах // Прикладная биохимия и микробиология. 2021. Т. 57, № 6. С. 571–582. DOI: 10.31857/S0555109921060027. EDN: EDJKMB.

Плотникова Е.Г. др. Особенности разложения 4-хлорбифенила и 4 хлорбензойной кислоты штам-мом Rhodococcus ruber P25 // Микробиология. 2012. Т. 81, № 2. С. 159–170. DOI: 10.1134/S0026261712020117. EDN: OWWZQP.

Руководство по проведению доклинических исследований лекарственных средств. Ч. 1. М.: Гриф и К, 2012. 944 с.

Руководство по проведению доклинических исследований лекарственных средств. Ч. 2. М.: Гриф и К, 2012. 536 с.

Agulló L. et al. Genetics and Biochemistry of Biphenyl and PCB Biodegradation // Rojo F. (eds) Aerobic Utilization of Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology. Springer, Cham. 2019. P. 595–622. DOI: 10.1007/978-3-319-50418-6_30.

Camara B. et al. From PCBs to highly toxic metabolites by the biphenyl pathway // Environmental Mi-crobiology. 2004. Vol. 6, № 8. P. 842–850. DOI: 10.1111/j.1462-2920.2004.00630.x. EDN: FPHCRN.

Carlson L.M. et al. A systematic evidence map for the evaluation of noncancer health effects and expo-sures to polychlorinated biphenyl mixtures// Environmental Research. 2023. Vol. 220. Art. 115148. DOI: 10.1016/j.envres.2022.115148. EDN: AJUSEE.

Devi N.L. Persistent Organic Pollutants (POPs): Environmental risks, toxicological effects, and bioreme-diation for Environmental Safety and Challenges for Future Research. // Saxena G., Bharagava R. (eds). Bio-remediation of Industrial Waste for Environmental Safety. Singapore: Springer, 2020. Р. 53–76. DOI: 10.1007/978-981-13-1891-7_4.

Duffy J.E. et al. Impact of polychlorinated biphenyls (PCBs) on the immune function of fish: age as a variable in determining adverse outcome // Marine Environmental Research. 2002. Vol. 54, № 3–5. P. 559–563. DOI: 10.1016/s0141-1136(02)00176-9.

Egorova D.O. et al. Biodegradability of hydroxylated derivatives of commercial polychlorobiphenyls mixtures by Rhodococcus-strains // Journal of Hazardous Materials. 2020. Vol. 400. Art. 123328. https://doi.org/10.1016/j.jhazmat.2020.123328.

Erickson B.D., Kaley II R.G. Application of polychlorinated biphenyls // Environmental Scienсe and Pol-lution Research. 2011. Vol. 18. P. 135–151. DOI: 10.1007/s11356-010-0392-1.

Ermler S., Kortenkamp A. Systematic review of associations of polychlorinated biphenyl (PCB) exposure with declining semen quality in support of the derivation of reference doses for mixture risk assessments // Envi-ronmental Health. 2022. Vol. 21, № 1. Art. 94. DOI: 1186/s12940-022-00904-5. EDN: LMFYZI.

Final act of the Conference of Plenipotentiaries on the Stockholm, 22-23 May // UNEP / POPS/CONF/4. United Nations Environment Programme. Geneva, 2001. 44 p.

Frossard V. et al. The biological invasion of an apex predator (Silurus glanis) amplifies PCB transfer in a large lake food web // Science Total Environmental. 2023. Vol. 902. Art. 166037. DOI: 10.1016/j.scitotenv.2023.166037. EDN: ZNDLUB.

Fukuda M. Rhodococcus Multiple-Enzyme and Parallel-Degradation System for Aromatic Compounds // Nojiri H., Tsuda M., Fukuda M., Kamagata Y. (eds). Biodegradative Bacteria. Tokyo: Springer, 2014. P. 3–18. DOI: 10.1007/978-4-431-54520-0_1.

Gorbunova T.I. et al. Biodegradation of trichlorobiphenyls and their hydroxylated derivatives by Rhodo-coccus-strains // Journal of Hazardous Materials. 2021. Vol. 409. Art. 124471. DOI: 10.1016/j.jhazmat.2020.124471. EDN: QHUUIH.

Goto E. et al. Metabolic enhancement of 2,3’,4,4’,5-pentachlorobiphenyl (PCB118) using cytochrome P450 monooxygenase isolated from soil bacterium under the presence of perfluorocarboxylic acids (PFCAs) and the structural basis of its metabolism // Chemosphere. 2018. Vol. 210. P. 376–383. DOI: 10.1016/j.chemosphere.2018.07.026.

Guo C. et al. Research on knowledge construction and analysis of pesticide exposure to children based on bibliometrics // Environmental Science Pollution Research International. 2023. Vol. 30, № 45. P. 100325–100339. DOI: 10.1007/s11356-023-29457-x. EDN: AWKWQD.

Hall A.J. et al. Predicting the effects of polychlorinated biphenyls on cetacean populations through im-pacts on immunity and calf survival // Environmental Pollution. 2018. Vol. 233. P. 407–418, DOI: 10.1016/j.envpol.2017.10.074.

Haraguchi K. et al. Metabolism of 3,3',4,4'-tetrachlorobiphenyl via sulphur-containing pathway in rat: liver-specific retention of methylsulphonyl metabolite // Xenobiotica. 1997. Vol. 27, № 8. P. 831–842. DOI: 10.1080/004982597240190.

Jerne N.K., Nordin A.A. Plaque Formation in Agar by Single Antibody-Producing Cells // Science. 1963. Vol. 140, № 3565. Art. 405. DOI: 10.1126/science.140.3565.405. EDN: ICXOCZ.

Li C. et al. Photochemical formation of hydroxylated polychlorinated biphenyls (OH-PCBs) from deca-chlorobiphenyl (PCB-209) on solids/air interface // Journal of Hazardous Materials. 2019. Vol. 378. Art. 120758. DOI: 10.1016/j.jhazmat.2019.120758.

Ling J. et al. Health risk assessment and development of human health ambient water quality criteria for PCBs in Taihu Basin, China // Science of the Total Environmental. 2024. Vol. 920. Art. 170669. DOI: 10.1016/j.scitotenv.2024.170669. EDN: TVREVD.

Ludewig G., Robertson L.W. Polychlorinated biphenyls (PCBs) as initiating agents in hepatocellular car-cinoma // Cancer Letters. 2013. Vol. 334, № 1. P. 46–55. DOI: 10.1016/j.canlet.2012.11.041.

Miletić M. et al. Resveratrol ameliorates ortho- polychlorinated biphenyls' induced toxicity in ovary cells // Environmental Science Pollution Research International. 2023. Vol. 30, № 31. P. 77318–77327. DOI: 10.1007/s11356-023-27812-6. EDN: DIFMFD.

Murinová S., Dercová K. Potential Use of newly isolated bacterial strain Ochrobactrum anthropi in bio-remediation of polychlorinated biphenyls // Water, Air, and Soil Pollution. 2014. Vol. 225. Art. 1980. DOI: 10.1007/s11270-014-1980-3. EDN: UPQYMR.

Parales R.E., Resnic S.M. Aromatic ring hydroxylating dioxygenases // Ramos J.L., Levesque R.C. (eds). Pseudomonas. Boston, MA: Springer, 2006. P. 287–340.

Passatore L. et al. Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): state of knowledge and research perspectives // Journal of Hazardous Materials. 2014. Vol. 278. P. 189–202. DOI: 10.1016/j.jhazmat.2014.05.051. EDN: UPQYNV.

Reddy A.V.B. et al. Polychlorinated biphenyls (PCBs) in the environment: recent updates on sampling, pretreatment, cleanup technologies and their analysis. // Chemical Engineering Journal. 2019. Vol. 358. P. 1186–1207. DOI: 10.1016/j.cej.2018.09.205. EDN: WWVSZO.

Rengelshausen J. et al. Ten years after: findings from the medical surveillance program on Health Ef-fects in High-Level Exposure to PCB (HELPcB) // Archives of Toxicology. 2023. Vol. 97, № 10. P. 2609–2623. DOI: 10.1007/s00204-023-03578-1. EDN: GOEBBG.

Simpson A.K. et al. Human biomonitoring of dioxins, furans, and non-ortho dioxin-like polychlorinated biphenyls (PCBs) in blood plasma from Old Crow, Yukon, Canada (2019) // Scienсe Total Environment. 2024. Vol. 923. Art. 171222. DOI: 10.1016/j.scitotenv.2024.171222. EDN: HKFYWM.

Spector J.T. et al. Plasma polychlorinated biphenyl concentrations and immune function in postmeno-pausal women // Environmental Reserch. 2014. Vol. 131. P. 174–180. https://doi.org/10.1016/j.envres.2014.03.011.

Sun J. et al. Detection of methoxylated and hydroxylated polychlorinated biphenyls in sewage sludge in China with evidence for their microbial transformation // Scienсe Report. 2016. Vol. 6. Art. 29782. DOI: 10.1038/srep29782. EDN: UKNJNI.

Sun J. et al. Formation of hydroxylated and methoxylated polychlorinated biphenyls by Bacillus sub-tilis: new insights into microbial metabolism // Scienсe of the Total Environment. 2018. Vol. 613–614. P. 54–61. DOI: 10.1016/j.scitotenv.2017.09.063.

Tam N. et al. Reproductive toxicity in marine medaka (Oryzias melastigma) due to embryonic exposure to PCB 28 or 4’-OH-PCB 65 // Science of the Total Environment. 2023. Vol. 874. Art. 162401. DOI: 10.1016/j.scitotenv.2023.162401. EDN: EHLZNV.

Tehrani R., Van Aken B. Hydroxylated polychlorinated biphenyls in the environment: source, fate, and toxicities // Environmental Science of Pollution Research. 2014. Vol. 21. P. 6334–6345. DOI: 10.1007/s11356-013-1742-6. EDN: IMOHDY.

Wu C. et al. Advances in polychlorinated biphenyls-induced female reproductive toxicity // Science of the Total Environment. 2024. Vol. 918. Art. 170543. DOI: 10.1016/j.scitotenv.2024.170543. EDN: IEEGDL.

Yabu M. et al. Hydroxylation and dechlorination of 3,3',4,4'-tetrachlorobiphenyl (CB77) by rat and hu-man CYP1A1s and critical roles of amino acids composing their substrate-binding cavity // Science of the Total Environment. 2022. Vol. 837. Art. 155848. DOI: 10.1016/j.scitotenv.2022.155848. EDN: XFCHXG.

Наиболее читаемые статьи этого автора (авторов)