ВЛИЯНИЕ СУБСТРАТА СЕЛЕКЦИИ НА ПОЛИХЛОРБИФЕНИЛ-ДЕГРАДАТИВНУЮ АКТИВНОСТЬ АЭРОБНЫХ ПОЧВЕННЫХ БАКТЕРИАЛЬНЫХ АССОЦИАЦИЙ

Авторы

Ключевые слова:

полихлорированные бифенилы, бактериальные ассоциации, селекция, деструкция

Аннотация

В результате накопительного культивирования с использованием в качестве селективного фактора орто-фталата, нафталина или бифенила, получены шесть аэробных бактериальных ассоциаций. Установлено, что все ассоциации, достигнув стабильного состава, активно растут на селективном субстрате. Однако ассоциации, выделенные с применением в качестве селективного фактора орто-фталата, не обладают способностью использовать бифенил в качестве источника углерода. Ассоциации R24, R63, R26 и R62 эффективно растут в минеральной среде с бифенилом, а также осуществляют разложение коммерческих смесей ПХБ по классическому пути окисления бифенила. Уровень деструкции Трихлорбифенила данными ассоциациями составил 99.7 – 99.8%, а Совола – 99.6 – 99.8% за 8 сут. При этом не выявлено существенной разницы в показателях биодеструкции между ассоциациями R24 и R63, селектированными на бифениле, и ассоциациями R26 и R62, изолированными на нафталине.

Биографии авторов

Дарья Олеговна Егорова, ИЭГМ УрО РАН

Кандидат биологических наук, доцент, старший научный сотрудник лаборатории молекулярной микробиологии и биотехнологии

Марина Геннадьевна Первова, Институт органического синтеза им. И.Я. Постовского УрО РАН

Кандидат химических наук, старший научный сотрудник лаборатории фторорганических соединений 

Виталий Алексеевич Демаков, ИЭГМ УрО РАН

Чл.-корр РАН, доктор медицинских наук, зав. лабораторией молекулярной микробиологии и биотехнологии

Библиографические ссылки

ГОСТ 17.4.3.01-82. Охрана природы. Почвы. Общие требования к отбору проб. М.: Госстан-дарт, 1983. 8 с.

Назаров А.В. и др. Эколого-микробиологическая оценка грунтов, загрязненных полихлорированными бифенилами // Экология человека. 2016. № 3. С. 3–8.

Cervantes-González E. et al. Microbial diversity assessment of polychlorinated biphenyl-contaminated soils and the biostimulation and bioaugmentation processes // Environmental Monitoring and Assessment 2019. Vol. 191. P. 118. https://doi.org/10.1007/s10661-019-7227-4.

Chang Y.-C. et. al. Isolation of biphenyl and polychlorinated biphenyl-degrading bacteria and their degradation pathway // Applied Biochemistry and Biotechnology. 2013. Vol. 170. P. 381–398 https://doi.org/10.1007/s12010-013-0191-5.

Devi N.L. Persistent Organic Pollutants (POPs): Environmental Risks, Toxicological Effects, and Bioremediation for Environmental Safety and Challenges for Future Research // Bioremediation of Industrial Waste for Environmental Safety / eds. G. Saxena, R. Bharagava. Singapore: Springer, 2020. P. 53–76. https://doi.org/10.1007/978-981-13-1891-7_4.

Final act of the Conference of Plenipotentiaries on the Stockholm convention on persistent organic pollu-tants, Stockholm, 22-23 May // UNEP/POPS/ CONF/4. United Nations Environment Programme. Geneva. 2001. 44 р.

Hatamian-Zarmi A. et al. Extensive biodegradation of highly chlorinated biphenyl and Aroclor 1242 by Pseudomonas aeruginosa TMU56 isolated from contaminated soils // International Biodeterioration and Biodegradation. 2009. Vol. 63. P. 788–794. https://doi.org/10.1016/j.ibiod.2009.06.009.

Hoostal M.J., Bouzat J.L. Spatial patterns of bphA gene diversity reveal local adaptation of microbial communities to PCB and PAH contaminants // Microbiol. Ecology. 2016. Vol. 72. P. 559–570. https://doi.org/10.1007/s00248-016-0812-y.

Horváthová H., Lászlová K., Derkova K. Biore-mediation of PCB-contaminated shallow river sediments:the efficacy of biodegradation using individual bacterial strains and their consortia // Chemosphere. 2018. Vol. 193. P. 270–277. https://doi.org/10.1016/j.chemosphere.2017.11.012.

Ilori M.O., Robinson G.K., Adebusoye S.A. Aerobic mineralization of 4,4’-dichlorobiphqnyl and 4-chlorobenzoic acid by a novel natural bacterial strain that grows poorly on benzoate and biphenyl // World Journal of Microbiology Biotechnology. 2008. Vol. 24. P. 1259–1265. https://doi.org/10.1007s11274-007-9597-y.

Jia Y. et al. Identification and characterization of a meta-cleavage product hydrolase involved in biphenyl degradation from Arthrobacter sp. YC-RL1 // Applied Microbiol. Biotechnology. 2019. Vol. 103, № 16. P. 6825–6836. https://doi.org/10.1007/s00253-019-09956-z

Kolar A.B. et al. PCB-degrading potential of aerobic bacteria enriched from marine sediments // International Biodeterioration and Biodegradation. 2007. Vol. 60. P. 16–24. https://doi.org/10.16/j.ibiod.2006.11.004.

Kwon S.-H. et al. Bioremediation of Aroclor 1242 by a consortium culture in marine sediment microcosm // Biotechnology and Bioprocess Engineering. 2008. Vol. 13. P. 730–737. https://doi.org/10.1007/s12257-008-0111-7.

Liz J.A.Z.E. et al. Degradation of polychlorinated biphenyl (PCB) by a consortium obtained from a contaminated soil composed of Brevibacterium, Pandoraea and Ochrobactrum // World Journal of Microbiology and Biotechnology. 2009. Vol. 25. P. 165–170. https://doi.org/10.1007/s11274-008-9875-3.

Matturro B. et al. Polychlorinated biphenyl (PCB) anaerobic degradation in marine sediments: microcosm study and role of autochthonous microbial communities // Environmental Science Pollution Research. 2016. Vol. 23. P. 12613–12623. https://doi.org/10.1007/s11356-015-4960-2.

Murinová S., Dercová K. Potential Use of newly iso-lated bacterial strain Ochrobactrum anthropi in bioremediation of polychlorinated biphenyls // Water Air Soil Pollution. 2014. Vol. 225. P. 1980. https://doi.org/10.1007/s11270-014-1980-3

Papale M. et al. Enrichment, isolation and biodegradation potential of psychrotolerant polychlorinated-biphenyl degrading bacterial from the Kongsfjorden (Svalbard Islands, High Arctic Norway) // Marine Pollution Bulletin. 2017. Vol. 114. P. 849–859.

Parales R.E., Resnick S.M. Aromatic Ring Hydroxylating Dioxygenases // Pseudomonas / eds. J.L. Ramos, R.C. Levesque. Boston: Springer, 2006. P. 287–340. https://doi.org/10.1007/0-387-28881-3_9.

Pathiraja G. et al. Effective degradation of po-lychlorinated biphenyls by a facultative anaerobic bacterial consortium using alternating anaerobic aerobic treatments // Science of Total Environment. 2019. Vol. 659. P. 507–514. https://doi.org/10.1016/scitotenv.2018.12.385.

Reddy A.V.B., Moniruzzaman M., Aminabhavi T.M. Polychlorinated biphenyls (PCBs) in the environment: recent updates on sampling, pretreatment, cleanup technologies and their analysis // Chemical Engineering Journal. 2019. Vol. 358. P. 11860–01207. https://doi.org/10.1016/j.cej.2018.09.205.

Revich B., Shelepchikov A. Persistent organic pollutants (POPs) hot spots in Russia // The Fate of Persistent Organic Pollutants in the Environment / eds. E. Mehmetli, B. Koumanova. Springer, 2008. P. 113–126.

Revich B. et al. Dioxin exposure and public health in Chapaevsk, Russia // Chemosphere. 2001. Vol. 43. P. 951–966.

Shah V. et al. Taxonomic profiling and metagenome analysis of a microbial community from a habitat contaminated with industrial discharges // Microbiol. Ecology. 2013. Vol. 66. P. 533–550. https://doi.org/10.1007/s00248-013-0253-9.

Su X. et al. Enhanced degradation of biphenyl from PCB-contaminated sediments: the impact of extracellular organic matter from Micrococcus luteus // Applied Microbiology and Biotechnology. 2015. Vol. 99. P. 1989–2000. https://doi.org/10.1007/s00253-014-6108-6.

Wu M. et al. Degradation of polycyclic aromatic hydrocarbons by microbial consortia enriched from three soils using two different culture media // Environmental Pollution. 2013. Vol. 178. P.152–158. https://doi.org/10.1016/j.envpol.2013.03.004.

Загрузки

Опубликован

2020-12-23