Analysis of the influence of biphenyl, chlorinated/chlorohydroxybiphenyls, and their biotransformation products on the immune response and morphofunctional state of the liver

Main Article Content

Sergey V. Gein
Darya O. Egorova
Nikolay A. Korolyov
Natalia P. Loginova
Tatyana I. Gorbunova
Elisaveta S. Nagovitsyna

Abstract

It has been established that biphenyl and PCB 12 (3,4-dichlorobiphenyl) suppressed humoral immunity by reducing the number of antibody-producing cells in the spleen. After microbial degradation of the investigated compounds by the Rhodococcus ruber 25 strain over 7 and 14 days, the metabolites of PCB 12 and biphenyl continued to exert an inhibitory effect on the number of antibody-producing cells. Mixture R, consisting of chlorinated and hydroxylated derivatives of biphenyl, did not influence the humoral response but stimulated the cell-mediated response; this effect was negated following microbial degradation. Histological studies indicated that biphenyl, PCB 12, and mixture R led to the development of chronic hepatitis in the liver, characterized by signs of fatty and focal hydropic (centrolobular) dystrophy of hepatocytes. Vascular responses were observed, including congestion with signs of hemolysis of erythrocytes. Perivascular lymphohistiocytic infiltration was noted. Under the influence of metabolites formed during the degradation of the investigated compounds by the R. ruber P25 strain over 7 to 14 days, dystrophic changes in hepatocytes persisted (without necro-inflammatory reaction), and signs of reparative regeneration developed.

Article Details

How to Cite
Gein С. В., Egorova Д. О., Korolyov Н. А., Loginova Н. П., Gorbunova Т. И., & Nagovitsyna Е. С. (2025). Analysis of the influence of biphenyl, chlorinated/chlorohydroxybiphenyls, and their biotransformation products on the immune response and morphofunctional state of the liver. Bulletin of Perm University. Biology, (1), 103–115. https://doi.org/10.17072/1994-9952-2025-1-103-115
Section
Иммунология
Author Biographies

Sergey V. Gein, Institute of Ecology and Genetics of Microorganisms, Ural Branch of RAS, Perm, Russia

Doctor of Medical Sciences, Professor

Darya O. Egorova, Institute of Ecology and Genetics of Microorganisms, Ural Branch of RAS, Perm, Russia

Doctor of Biological Sciences, Associate Professor, Senior Researcher

Nikolay A. Korolyov, Institute of Ecology and Genetics of Microorganisms, Ural Branch of RAS, Perm, Russia

Postgraduate Student

Natalia P. Loginova, Wagner Perm State Medical University, Perm, Russia

Doctor of Medical Sciences

Tatyana I. Gorbunova, I.Ya. Postovsky Institute of Organic Synthesis Ural Branch of RAS, Yekaterinburg, Russia

Doctor of Chemical Sciences

Elisaveta S. Nagovitsyna, Perm State University, Perm, Russia

Master's student

References

Европейская конвенция по защите позвоночных животных, используемых для экспериментальных и других научных целей // Страсбург, 1986. URL: https://rm.coe.int/168007a6a8.

Егорова Д.О. и др. Моделирование структуры α-субъединицы бифенил диоксигеназы штаммов ро-да Rhodococcus и особенности деструкции хлорированных- и гидроксилированных бифенилов при раз-личных температурах // Прикладная биохимия и микробиология. 2021. Т. 57, № 6. С. 571–582. DOI: 10.31857/S0555109921060027. EDN: EDJKMB.

Плотникова Е.Г. др. Особенности разложения 4-хлорбифенила и 4 хлорбензойной кислоты штам-мом Rhodococcus ruber P25 // Микробиология. 2012. Т. 81, № 2. С. 159–170. DOI: 10.1134/S0026261712020117. EDN: OWWZQP.

Руководство по проведению доклинических исследований лекарственных средств. Ч. 1. М.: Гриф и К, 2012. 944 с.

Руководство по проведению доклинических исследований лекарственных средств. Ч. 2. М.: Гриф и К, 2012. 536 с.

Agulló L. et al. Genetics and Biochemistry of Biphenyl and PCB Biodegradation // Rojo F. (eds) Aerobic Utilization of Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology. Springer, Cham. 2019. P. 595–622. DOI: 10.1007/978-3-319-50418-6_30.

Camara B. et al. From PCBs to highly toxic metabolites by the biphenyl pathway // Environmental Mi-crobiology. 2004. Vol. 6, № 8. P. 842–850. DOI: 10.1111/j.1462-2920.2004.00630.x. EDN: FPHCRN.

Carlson L.M. et al. A systematic evidence map for the evaluation of noncancer health effects and expo-sures to polychlorinated biphenyl mixtures// Environmental Research. 2023. Vol. 220. Art. 115148. DOI: 10.1016/j.envres.2022.115148. EDN: AJUSEE.

Devi N.L. Persistent Organic Pollutants (POPs): Environmental risks, toxicological effects, and bioreme-diation for Environmental Safety and Challenges for Future Research. // Saxena G., Bharagava R. (eds). Bio-remediation of Industrial Waste for Environmental Safety. Singapore: Springer, 2020. Р. 53–76. DOI: 10.1007/978-981-13-1891-7_4.

Duffy J.E. et al. Impact of polychlorinated biphenyls (PCBs) on the immune function of fish: age as a variable in determining adverse outcome // Marine Environmental Research. 2002. Vol. 54, № 3–5. P. 559–563. DOI: 10.1016/s0141-1136(02)00176-9.

Egorova D.O. et al. Biodegradability of hydroxylated derivatives of commercial polychlorobiphenyls mixtures by Rhodococcus-strains // Journal of Hazardous Materials. 2020. Vol. 400. Art. 123328. https://doi.org/10.1016/j.jhazmat.2020.123328.

Erickson B.D., Kaley II R.G. Application of polychlorinated biphenyls // Environmental Scienсe and Pol-lution Research. 2011. Vol. 18. P. 135–151. DOI: 10.1007/s11356-010-0392-1.

Ermler S., Kortenkamp A. Systematic review of associations of polychlorinated biphenyl (PCB) exposure with declining semen quality in support of the derivation of reference doses for mixture risk assessments // Envi-ronmental Health. 2022. Vol. 21, № 1. Art. 94. DOI: 1186/s12940-022-00904-5. EDN: LMFYZI.

Final act of the Conference of Plenipotentiaries on the Stockholm, 22-23 May // UNEP / POPS/CONF/4. United Nations Environment Programme. Geneva, 2001. 44 p.

Frossard V. et al. The biological invasion of an apex predator (Silurus glanis) amplifies PCB transfer in a large lake food web // Science Total Environmental. 2023. Vol. 902. Art. 166037. DOI: 10.1016/j.scitotenv.2023.166037. EDN: ZNDLUB.

Fukuda M. Rhodococcus Multiple-Enzyme and Parallel-Degradation System for Aromatic Compounds // Nojiri H., Tsuda M., Fukuda M., Kamagata Y. (eds). Biodegradative Bacteria. Tokyo: Springer, 2014. P. 3–18. DOI: 10.1007/978-4-431-54520-0_1.

Gorbunova T.I. et al. Biodegradation of trichlorobiphenyls and their hydroxylated derivatives by Rhodo-coccus-strains // Journal of Hazardous Materials. 2021. Vol. 409. Art. 124471. DOI: 10.1016/j.jhazmat.2020.124471. EDN: QHUUIH.

Goto E. et al. Metabolic enhancement of 2,3’,4,4’,5-pentachlorobiphenyl (PCB118) using cytochrome P450 monooxygenase isolated from soil bacterium under the presence of perfluorocarboxylic acids (PFCAs) and the structural basis of its metabolism // Chemosphere. 2018. Vol. 210. P. 376–383. DOI: 10.1016/j.chemosphere.2018.07.026.

Guo C. et al. Research on knowledge construction and analysis of pesticide exposure to children based on bibliometrics // Environmental Science Pollution Research International. 2023. Vol. 30, № 45. P. 100325–100339. DOI: 10.1007/s11356-023-29457-x. EDN: AWKWQD.

Hall A.J. et al. Predicting the effects of polychlorinated biphenyls on cetacean populations through im-pacts on immunity and calf survival // Environmental Pollution. 2018. Vol. 233. P. 407–418, DOI: 10.1016/j.envpol.2017.10.074.

Haraguchi K. et al. Metabolism of 3,3',4,4'-tetrachlorobiphenyl via sulphur-containing pathway in rat: liver-specific retention of methylsulphonyl metabolite // Xenobiotica. 1997. Vol. 27, № 8. P. 831–842. DOI: 10.1080/004982597240190.

Jerne N.K., Nordin A.A. Plaque Formation in Agar by Single Antibody-Producing Cells // Science. 1963. Vol. 140, № 3565. Art. 405. DOI: 10.1126/science.140.3565.405. EDN: ICXOCZ.

Li C. et al. Photochemical formation of hydroxylated polychlorinated biphenyls (OH-PCBs) from deca-chlorobiphenyl (PCB-209) on solids/air interface // Journal of Hazardous Materials. 2019. Vol. 378. Art. 120758. DOI: 10.1016/j.jhazmat.2019.120758.

Ling J. et al. Health risk assessment and development of human health ambient water quality criteria for PCBs in Taihu Basin, China // Science of the Total Environmental. 2024. Vol. 920. Art. 170669. DOI: 10.1016/j.scitotenv.2024.170669. EDN: TVREVD.

Ludewig G., Robertson L.W. Polychlorinated biphenyls (PCBs) as initiating agents in hepatocellular car-cinoma // Cancer Letters. 2013. Vol. 334, № 1. P. 46–55. DOI: 10.1016/j.canlet.2012.11.041.

Miletić M. et al. Resveratrol ameliorates ortho- polychlorinated biphenyls' induced toxicity in ovary cells // Environmental Science Pollution Research International. 2023. Vol. 30, № 31. P. 77318–77327. DOI: 10.1007/s11356-023-27812-6. EDN: DIFMFD.

Murinová S., Dercová K. Potential Use of newly isolated bacterial strain Ochrobactrum anthropi in bio-remediation of polychlorinated biphenyls // Water, Air, and Soil Pollution. 2014. Vol. 225. Art. 1980. DOI: 10.1007/s11270-014-1980-3. EDN: UPQYMR.

Parales R.E., Resnic S.M. Aromatic ring hydroxylating dioxygenases // Ramos J.L., Levesque R.C. (eds). Pseudomonas. Boston, MA: Springer, 2006. P. 287–340.

Passatore L. et al. Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): state of knowledge and research perspectives // Journal of Hazardous Materials. 2014. Vol. 278. P. 189–202. DOI: 10.1016/j.jhazmat.2014.05.051. EDN: UPQYNV.

Reddy A.V.B. et al. Polychlorinated biphenyls (PCBs) in the environment: recent updates on sampling, pretreatment, cleanup technologies and their analysis. // Chemical Engineering Journal. 2019. Vol. 358. P. 1186–1207. DOI: 10.1016/j.cej.2018.09.205. EDN: WWVSZO.

Rengelshausen J. et al. Ten years after: findings from the medical surveillance program on Health Ef-fects in High-Level Exposure to PCB (HELPcB) // Archives of Toxicology. 2023. Vol. 97, № 10. P. 2609–2623. DOI: 10.1007/s00204-023-03578-1. EDN: GOEBBG.

Simpson A.K. et al. Human biomonitoring of dioxins, furans, and non-ortho dioxin-like polychlorinated biphenyls (PCBs) in blood plasma from Old Crow, Yukon, Canada (2019) // Scienсe Total Environment. 2024. Vol. 923. Art. 171222. DOI: 10.1016/j.scitotenv.2024.171222. EDN: HKFYWM.

Spector J.T. et al. Plasma polychlorinated biphenyl concentrations and immune function in postmeno-pausal women // Environmental Reserch. 2014. Vol. 131. P. 174–180. https://doi.org/10.1016/j.envres.2014.03.011.

Sun J. et al. Detection of methoxylated and hydroxylated polychlorinated biphenyls in sewage sludge in China with evidence for their microbial transformation // Scienсe Report. 2016. Vol. 6. Art. 29782. DOI: 10.1038/srep29782. EDN: UKNJNI.

Sun J. et al. Formation of hydroxylated and methoxylated polychlorinated biphenyls by Bacillus sub-tilis: new insights into microbial metabolism // Scienсe of the Total Environment. 2018. Vol. 613–614. P. 54–61. DOI: 10.1016/j.scitotenv.2017.09.063.

Tam N. et al. Reproductive toxicity in marine medaka (Oryzias melastigma) due to embryonic exposure to PCB 28 or 4’-OH-PCB 65 // Science of the Total Environment. 2023. Vol. 874. Art. 162401. DOI: 10.1016/j.scitotenv.2023.162401. EDN: EHLZNV.

Tehrani R., Van Aken B. Hydroxylated polychlorinated biphenyls in the environment: source, fate, and toxicities // Environmental Science of Pollution Research. 2014. Vol. 21. P. 6334–6345. DOI: 10.1007/s11356-013-1742-6. EDN: IMOHDY.

Wu C. et al. Advances in polychlorinated biphenyls-induced female reproductive toxicity // Science of the Total Environment. 2024. Vol. 918. Art. 170543. DOI: 10.1016/j.scitotenv.2024.170543. EDN: IEEGDL.

Yabu M. et al. Hydroxylation and dechlorination of 3,3',4,4'-tetrachlorobiphenyl (CB77) by rat and hu-man CYP1A1s and critical roles of amino acids composing their substrate-binding cavity // Science of the Total Environment. 2022. Vol. 837. Art. 155848. DOI: 10.1016/j.scitotenv.2022.155848. EDN: XFCHXG.