Integral representation of solution manifolds for over determined systems with one singular line

Authors

  • Boitura Shoimkulov Tajik National University

DOI:

https://doi.org/10.17072/1993-0550-2021-2-5-9

Keywords:

partial differential equations, ystems of differential equations, partial derivatives, over determined, singular, line

Abstract

In this paper, an over determined system of second-order partial differential equations with one singular line is investigated. A compatibility condition is found for over determined systems of second-order partial differential equations with one singular line. Under the condition of compatibility, introducing a new function, we come to a over determined system of partial differential equations of the second order with one singular line of a simpler form. The integral representation of the manifold of solutions of the redefined second-order partial differential system with one singular line is found explicitly through three arbitrary constants, for which initial data problems (Cauchy type problems) can be posed.

References

Wilczynski E.J. Projective Differential Geometry of Curves and Ruled Surfaces / E.J. Wilczynski. Leipzig:B.G. Teubner, 1906. 324 p.

Appel P. Fonctons hypergeometriges of hyperspheriges Polynomes d’Hermite / P. Appel, M.J. Kampe de Feriet. Paris: Gauthier-Villars. 1926. 434 p.

Архутик Г.М. Регулярная особая точка линейных уравнений в полных дифференциалах высших порядков // Изв. АН БССР. Сер. физ.-мат. наук. 1979. № 3. С. 46–54.

Михайлов Л.Г. Некоторые переопределенные системы уравнений в частных производных с двумя неизвестными функциями. Душанбе: Дониш, 1986. 116 с.

Begehr H. Transformations, transmutations and kernel functions / H. Begehr, R.P. Gilbert. Vol. 2. Harlow: Longman, 1993. 268 p.

Раджабов Н. Интегральные представления и граничные задачи для некоторых дифференциальных уравнений с сингулярной линией или сингулярными поверхностями // Душанбе, изд-во ТГУ, ч. I, 1980. 126 с.; ч. II, 1981. 170 с.; ч. III. 1982. 170 с.

Зайцев М.Л., Аккерман В.Б. Гипотеза об упрощении переопределенных систем дифференциальных уравнений и ее применение к уравнениям гидродинамики // Вестник ВГУ. Серия: физика. Математика. 2015. № 2. 527 с.

Курант Р. Уравнения с частными производными. М.: Мир, 1964. 830 с.

Пиров Р. Исследование некоторых нелинейных систем уравнений в частных производных второго порядка с одной неизвестной функцией на плоскости // Крайовi задачi для диференцiалних рiвнянь. Чернiвцi: Прут, 2006. Вып. 14. С. 313–320.

Хартман Ф. Обыкновенные дифференциальные уравнения. М.: Мир, 1970. 720 с.

Бровко Г.Л. Необходимые и достаточные условия однородно-простой деформации // Прикл. матем. и механика. 1978. Т. 42. С. 701–710.

Ленская С.Э. О неоднородно-простых процессах // Вестник Моск. ун-та. Сер. Математика, механика. 1988. № 1. С. 100–103.

Пиров Р. Об одной переопределенной системе уравнений в частных производных второго порядка. Душанбе, 1989. 15 с. Деп. в Тадж. НИИНТИ 19.06.89. № 22(622).

Шоймкулов Б.М., Рузметов Э. К теории некоторых переопределенных систем уравнений в частных производных второго порядка с сингулярными точками на плоскости // Дифференциальные и интегральные уравнения и их приложения (сб. науч. статей), ТГПУ. Вып. 6. Душанбе. 1998. С. 96–106.

Шоймкулов Б.М., Раджабов Н. Линейная переопределенная система второго порядка с одной сингулярной точкой // Вестник Национального Университета (серия естественных наук). № 3(26). Душанбе, ТГНУ: "Сино". 2005. С. 3–10.

Шоймкулов Б.М., Раджабов Н., Комилов А.О. Интегральные представления многообразия решений для одного класса дифференциальных уравнений в частных производных третьего порядка с тремя сверхсингулярными областями // Вестник Таджикского национального университета, № 1/2, (науч. журн.), серия естественных наук, Душанбе. 2017. С. 3–7.

Шоймкулов Б.М. К теории переопределенных систем дифференциальных уравнений в частных производных второго порядка с одной сингулярной линией и двумя сверхсингулярными линиями // Вестник Таджикского национального университета. Серия естественных наук. № 3. Душанбе. 2018. С. 32–43.

Шоймкулов Б.М. Переопределенная система дифференциальных уравнений в частных производных первого порядка с одной сверхсингулярной и одной сингулярной плоскостью в трехмерном пространстве // Электронный инновационный вестник: междунар. период. журн. науч. тр. № 6. Бугульма. 2019. С. 4–12.

Шоймкулов Б.М. Переопределенная система дифференциальных уравнений в частных производных первого порядка с одной сингулярной и двумя сверхсингулярными точками // Материалы международной научной конференции "Современные проблемы естественных и гуманитарных наук и их роль в укреплении научных связей между странами", посвященной 10-летию Филиала МГУ имени М.В. Ломоносова в г. Душанбе (10–11 октября). Душанбе. 2019. С. 79–82.

Шоймкулов Б.М. О некоторых переопределенных систем дифференциальных уравнений в частных производных первого порядка с одной сингулярной и двумя сверх сингулярными точками // Электронный инновационный вестник: междунар.период. журн. науч. тр. № 1(12). Бугульма. 2020. С. 4–11.

Шоймкулов Б.М. К теории переопределенных систем дифференциальных уравнений в частных производных второго порядка с одной слабой сингулярной и двумя сверхсингулярными линиями // Вестник Пермского университета. Математика. Механика. Информатика. 2020. № 4 (51). С. 24–28.

Published

2021-12-10

How to Cite

Shoimkulov Б. М. (2021). Integral representation of solution manifolds for over determined systems with one singular line. BULLETIN OF PERM UNIVERSITY. MATHEMATICS. MECHANICS. COMPUTER SCIENCE, (2 (53), 5–9. https://doi.org/10.17072/1993-0550-2021-2-5-9