Переопределенная система дифференциальных уравнений в частных производных второго порядка с одной сингулярной точкой и одной граничной сверхсингулярной линией

Авторы

DOI:

https://doi.org/10.17072/1993-0550-2022-3-18-24

Ключевые слова:

системы дифференциальных уравнений, условия совместности, частные производные, переопределенная, граничные, сингулярные, сингулярная точка, сверхсингулярная линия

Аннотация

Рассматривается переопределенная система дифференциальных уравнений в частных производных второго порядка с одной сингулярной точкой и одной граничной сверхсингулярной линии. Найдено многообразие решений переопределенных систем дифференциальных уравнений в частных производных второго порядка с одной сингулярной точкой и одной граничной сверхсингулярной линией в явном виде при выполнении условии совместности с использованием трех произвольных постоянных. Введя в рассмотрение новую функцию из двух первых уравнений данной системы, получается переопределенная система дифференциальных уравнений в частных производных первого порядка с одной сингулярной точкой. Общее решение этой системы находится в явном виде с использованием одной произвольной постоянной. Далее, подставляя общее решение в третье уравнение данной системы, получаем условие, эквивалентное условиям совместности данной системы. При его выполнении решение сводится к решению системы обыкновенных дифференциальных уравнений второго порядка с одной сверхсингулярной линией. Решая полученную систему, находим общее решение переопределяемой системы в явном виде с использованием трех произвольных постоянных.

Библиографические ссылки

Wilczynski E.J. Projective Differential Geometry of Curves and Ruled Surfaces / E.J. Wilczynski. Leipzig:B.G. Teubner, 1906. 324 p.

Appel P. Fonctons hypergeometriges of hyperspheriges Polynomes d’Hermite / P. Appel, M.J. Kampe de Feriet. Paris: Gauthier-Villars. 1926. 434 p.

Архутик Г.М. Регулярная особая точка линейных уравнений в полных дифференциалах высших порядков // Известия АН БССР. Сер. физ.-мат. наук. 1979. № 3. С. 46–54.

Михайлов Л.Г. Некоторые переопределенные системы уравнений в частных производных с двумя неизвестными функциями. Душанбе: Дониш, 1986. 116 с.

Begehr H. Transformations, transmutations and kernel functions / H. Begehr, R.P. Gilbert. Vol. 2. Harlow: Longman, 1993. 268 p.

Раджабов Н. Введение в теорию дифференциальных уравнений в частных производных со сверхсингулярными коэффициентами: учеб. пособие по спецкурсу. Душанбе, 1992. 236 с.

Раджабов Н. Интегральные представления и граничные задачи для некоторых дифференциальных уравнений с сингулярной линией или сингулярными поверхностями // Душанбе, изд. ТГУ, ч. № I, 1980. 126 с., ч. № II, 1981. 170 с., ч. № III. 1982. 170 с.

Пиров Р. Исследование некоторых нелинейных систем уравнений в частных производных второго порядка с одной неизвестной функцией на плоскости // Крайовi задачi для диференцiалних рiвнянь. Чернiвцi: Прут, 2006. Вып. 14. С. 313–320.

Бровко Г.Л. Необходимые и достаточные условия однородно-простой деформации // Прикладная математика и механика. 1978. Т. 42. С. 701–710.

Ленская С.Э. О неоднородно-простых процессах // Вестник Моск. ун-та. Сер. Математика, механика. 1988. № 1. С. 100–103.

Пиров Р. Об одной переопределенной системе уравнений в частных производных второго порядка. Душанбе, 1989. 15 с. Деп. в Тадж. НИИНТИ 19.06.89. № 22 (622).

Шоймкулов Б.М., Рузметов Э. К теории некоторых переопределенных систем уравнений в частных производных второго порядка с сингулярными точками на плоскости // Дифференциальные и интегральные уравнения и их приложения (сб. науч. ст.). Душанбе: ТГПУ, 1998. Вып. 6. С. 96–106.

Шоймкулов Б.М., Раджабов Н. Линейная переопределенная система второго порядка с одной сингулярной точкой // Вестник Национального Университета (серия естественных наук). Душанбе: ТГНУ, "Сино", 2005. № 3 (26). С. 3–10.

Шоймкулов Б.М., Раджабов Н., Комилов А.О. Интегральные представления многообразия решений для одного класса дифференциальных уравнений в частных производных третьего порядка с тремя сверхсингулярными областями // Вестник Таджикского национального университета. Серия естественных наук. Душанбе, 2017. № 1–2. С. 3–7.

Шоймкулов Б.М. К теории переопределенных систем дифференциальных уравнений в частных производных второго порядка с одной сингулярной линией и двумя сверхсингулярными линиями // Вестник Таджикского национального университета. Серия естественных наук. Душанбе, 2018. № 3. С. 32–43.

Шоймкулов Б.М. Переопределенная система дифференциальных уравнений в частных производных первого порядка с одной сверхсингулярной и одной сингулярной плоскостью в трехмерном пространстве // Электронный инновационный вестник: междунар. период. журн. науч. тр. Бугульма, 2019. № 6. С. 4–12.

Шоймкулов Б.М. Переопределенная система дифференциальных уравнений в частных производных первого порядка с одной сингулярной и двумя сверхсингулярными точками // Материалы междунар. науч. конф. "Современные проблемы естественных и гуманитарных наук и их роль в укреплении научных связей между странами", посвященной 10-летию Филиала МГУ имени М.В. Ломоносова в г. Душанбе (10–11 октября). Душанбе, 2019. С. 79–82.

Шоймкулов Б.М. Переопределенная система дифференциальных уравнений в частных производных первого порядка с одной сингулярной и одной сверхсингулярной точкой // Вестник Пермского университета. Математика. Механика. Информатика. 2020. Вып. 3(50). С. 17–23.

Загрузки

Опубликован

29.09.2022

Как цитировать

Шоймкулов, Б. М. (2022). Переопределенная система дифференциальных уравнений в частных производных второго порядка с одной сингулярной точкой и одной граничной сверхсингулярной линией. ВЕСТНИК ПЕРМСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. ИНФОРМАТИКА, (3 (58), 18–24. https://doi.org/10.17072/1993-0550-2022-3-18-24

Наиболее читаемые статьи этого автора (авторов)