Пиридиниминовые комплексы палладия (II): синтез и ингибирование моноаминоксидазы

Авторы

  • Михаил Сергеевич Денисов (Mikhail S. Denisov) Федеральное государственное учреждение науки Пермского федерального исследовательского центра Уральского отделения Российской академии наук http://orcid.org/0000-0002-2261-8122
  • Ольга Николаевна Гагарских (Olga N. Gagarskikh) Федеральное государственное учреждение науки Пермского федерального исследовательского центра Уральского отделения Российской академии наук
  • Таисия Андреевна Утушкина (Taisiya A. Utushkina) Пермский государственный национальный исследовательский университет http://orcid.org/0000-0002-6314-1850

DOI:

https://doi.org/10.17072/2223-1838-2021-1-30-58

Ключевые слова:

МАО, палладий, N, N'-бидентатные иминовые лиганды

Аннотация

One-pot синтезом получено 15 цис-пиридиниминовых комплексов палладия (II), в том числе шесть комплексов синтезированных впервые. Состав и строение доказаны методом ЯМР, ИК, РСА и элементным анализом. На головном мозге мышей проводили исследования ингибирования моноаминоксидаз с использованием полученных комплексов. Некоторые вещества: [2,6-диметил-N-((пиридин-2-ил)метилен)анилин]-цис-дихлоридопалладий(II), [4-нитро-N-((пиридин-2-ил)метилен)анилин]-цис-дихлоридопалладий(II), и цис-дибромидо[2,6-ди(пропан-2-ил)-N-((пиридин-2-ил)метилен)анилин]палладий(II), проявили активность (концентрация IC50 составила от 13.09 до 17.66 мкМ). Все исследуемые соединения показали отсутствие цитотоксического эффекта на клеточной линии HEK-293 (эмбриональные клетки почки человека). Оценка острой токсичности цис-дибромидо[2,6-ди(пропан-2-ил)-N-((пиридин-2-ил)метилен)анилин]палладий(II) показала, что исследуемый комплекс обладает низкой токсичностью (LD50> 5000 мг/кг) при внутрибрюшинном введении вещества мышам. Проведены тесты на устойчивость к phosphate-buffered saline pH 7.4 и диметилсульфоксиду. Оценена биодосупность на основании измерения log P.

Биографии авторов

Михаил Сергеевич Денисов (Mikhail S. Denisov), Федеральное государственное учреждение науки Пермского федерального исследовательского центра Уральского отделения Российской академии наук

научный сотрудник лаборатории биологически активных соединенийий

Ольга Николаевна Гагарских (Olga N. Gagarskikh), Федеральное государственное учреждение науки Пермского федерального исследовательского центра Уральского отделения Российской академии наук

младший научный сотрудник лаборатории механобиологии живых систем

Таисия Андреевна Утушкина (Taisiya A. Utushkina), Пермский государственный национальный исследовательский университет

студент

Библиографические ссылки

Hong R., Li X. Discovery of monoamine oxidase inhibitors by medicinal chemistry approaches // Med. Chem. Commun. 2019. Vol. 10. P. 10–25. URL: https://doi.org/10.1039/C8MD00446C

Youdim M. B., Lavie L. Selective MAO-A and B inhibitors, radical scavengers and nitric oxide synthase inhibitors in Parkinson's desease // Life Sci. 1994. Vol. 55. Iss. 25–26. P. 2077–2082. URL: https://doi.org/10.1016/0024-3205(94)00388-2

Скайерс Р. Ф. Открытие форм моноаминоксидаз А и Б // Вопросы медицинской химии. 1997. Т. 43. № 6. С. 433–439. URL: https://www.elibrary.ru/item.asp?id=22536252

Kopin I. J. Features of the Dopaminergic Neurotoxin MPTP // Ann. N. Y. Acad. Sci. 1992. Vol. 648. P. 96–104. URL: https://doi.org/10.1111/j.1749-6632.1992.tb24527.x

Chiba K., Trevor A., Castagnoli N. Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase // Biochem. Biophys. Res. Commun. 1984. Vol. 120. Iss. 2. P. 574–578. URL: https://doi.org/10.1016/0006-291X(84)91293-2

Garpenstrand H., Ekblom J., Forslund K. et al. Platelet monoamine oxidase activity is related to MAOB intron 13 genotype // J. Neural Transm. 2000. Vol. 107. P. 523–530. URL: https://doi.org/10.1007/s007020070075

Nicotra A., Pierucci F., Parvez H., Senatori O. Monoamine Oxidase Expression During Development and Aging // NeuroToxicology. 2004. Vol. 25. Iss. 1–2. P. 155–165. URL: https://doi.org/10.1016/S0161-813X(03)00095-0

Chiuccariello L., Houle S., Miller L. et al. Elevated Monoamine Oxidase A Binding During Major Depressive Episodes Is Associated with Greater Severity and Reversed Neurovegetative Symptoms // Neuropsychopharmacol. 2014. Vol. 39. P. 973–980. URl: https://doi.org/10.1038/npp.2013.297

Baldinger-Melich P., Gryglewski G., Philippe C. et al. The effect of electroconvulsive therapy on cerebral monoamine oxidase A expression in treatment-resistant depression investigated using positron emission tomography // Brain Stimulation. 2009. Vol. 12. Iss. 1. P. 714–723. URL: https://doi.org/10.1016/j.brs.2018.12.976

Лазарева Н. Ф., Лазарев И. М. Дегидрохлорирование хлороформа N-[метил-N,N-]бис(силатранилметил)амином // Изв. АН. Сер. хим. 2011. № 3. C. 585–588. URL: http://www.russchembull.ru/rus/index.php3?id=123&idi=1763&state=&rc=0&idp=0&action=showfull&type=%CF%E8%F1%FC%EC%E0%20%F0%E5%E4%E0%EA%F2%EE%F0%F3

Chirkova Z. V., Tukhvatshin R. S., Filimonov S. I. et al. Synthesis of 7,8-dicyanopyrimido[2,1-b][1,3]benzothiazoles // Mendeleev Commun. 2013. Vol. 23. Iss. 4. P. 215–216. URL: https://doi.org/10.1016/j.mencom.2013.07.012

Смолина А. В., Котельникова Р. А., Полетаева Д. А. и др. Влияние водорастворимых производных фуллерена С60 на каталитическую активность моноаминоксидазы В и их мембранотропные свойства // Изв. АН. Сер. хим. 2016. № 3. C. 784–789. URL: http://www.russchembull.ru/rus/index.php3?id=223&idi=3738&state=&rc=0&idp=0&action=showfull&type=%CF%EE%EB%ED%FB%E5%20%F1%F2%E0%F2%FC%E8

Николаева Н. С., Солдатова Ю. В., Смолина А. В. и др. Влияние фторсодержащих производных тетрагидрокарбазолов на ферменты окислительного дезаминирования биогенных аминов и на процесс перекисного окисления липидов // Изв. АН. Сер. хим. 2017. № 5. C. 870–874. URL: http://www.russchembull.ru/rus/index.php3?id=253&idi=4173&state=&rc=0&idp=0&action=showfull&type=%CF%EE%EB%ED%FB%E5%20%F1%F2%E0%F2%FC%E8

Chirkova Z. V., Kabanova M. V., Filimonov S. I. et al. An investigation of the monoamine oxidase inhibition properties of pyrrolo[3,4‐f]indole‐5,7‐dione and indole‐5,6‐dicarbonitrile derivatives // Drug Dev. Res. 2018. Vol. 79. Iss. 2 P. 81–93. URL: https://doi.org/10.1002/ddr.21425

Altintop M. D., Sever B., Osmaniye D. et al. Design, synthesis, in vitro and in silico evaluation of new pyrrole derivatives as monoamine oxidase inhibitors // Arch. Pharm. 2018. Vol. 35. Iss. 7. P. 1800082. URL: https://doi.org/10.1002/ardp.201800082

Shetnev A., Osipyan A., Baykov S. et al. Novel monoamine oxidase inhibitors based on the privileged 2-imidazoline molecular framework // Bioorg. Med. Chem. Lett. 2019. Vol. 29. Iss. P. 40–46. URL: https://doi.org/10.1016/j.bmcl.2018.11.018

Shetnev A., Shlenev R., Efimova J. et al. 1,3,4-Oxadiazol-2-ylbenzenesulfonamides as privileged structures for the inhibition of monoamine oxidase B // Bioorg. Med. Chem. Lett. 2019. Vol. 29. Iss. 21. P. 126677–126678. URL: https://doi.org/10.1016/j.bmcl.2019.126677

Chirkova Z. V., Kabanova M. V., Filimonov S. I. et al. Optimization of pyrrolo[3,4‐f]indole‐5,7‐dione and indole‐5,6‐dicarbonitrile derivatives as inhibitors of monoamine oxidase // Drug Dev. Res. 2019. Vol. 80. Iss. 7. P. 970–980. URL: https://doi.org/10.1002/ddr.21576

Shetnev A., Baykov S., Kalinin S. et al. 1,2,4-Oxadiazole/2-Imidazoline Hybrids: Multi-target-directed Compounds for the Treatment of Infectious Diseases and Cancer // Int. J. Mol. Sci. 2019. Vol. 20. Iss. 7. P. 1699–1699. URL: https://doi.org/10.3390/ijms20071699

Gama N. H., Elkhadir A. Y. F., Gordhan B. G. et al. Activity of phosphino palladium(II) and platinum(II) complexes against HIV-1 and Mycobacterium tuberculosis // Biometals. 2016. Vol. 29. P. 637–650. URL: https://doi.org/10.1007/s10534-016-9940-6

Liu W., Gust R. Update on metal N-heterocyclic carbene complexes as potential anti-tumor metallodrugs // Coord. Chem. Rev. 2016. Vol. 329. Iss. 15. P. 191–213. URL: https://doi.org/10.1016/j.ccr.2016.09.004

Soman S., Keatinge M., Moein M. et al. Inhibition of the mitochondrial calcium uniporter rescues dopaminergic neurons in pink1−/− zebrafish // European Journal of Neuro science. 2017. Vol. 45. lss. 4. P. 528–535. URL: https://doi.org/10.1111/ejn.13473

Родионов А. Н., Снегур Л. В., Сименел А. А. и др. Ферроцен-модификация аминокислот: синтез и биологическое действие на гиппокамп головного мозга // Изв. АН. Сер. хим.. 2017. № 1. C. 136–142. URL: http://www.russchembull.ru/rus/index.php3?id=248&idi=4097&state=&rc=0&idp=0&action=showfull&type=%CF%EE%EB%ED%FB%E5%20%F1%F2%E0%F2%FC%E8

Файнгольд И. И., Котельникова Р. А., Смолина А. В. и др. Антиоксидантная активность тетранитрозильного комплекса железа с тиосульфатными лигандами и его влияние на каталитическую активность митохондриальных ферментов в опытах in vitro // Доклады АН. 2019. Т. 488. № 5. С. 571–575. URL: https://www.elibrary.ru/item.asp?id=41353832

Yang D.-d., Wang R., Zhu J.-l. et al. Synthesis, crystal structures, molecular docking, in vitro monoamine oxidase-B inhibitory activity of transition metal complexes with 2-{4-[bis (4-fluorophenyl)methyl]piperazin-1-yl} acetic acid // J. Mol. Struct. 2017. Vol. 1128. Iss. 15. P. 493–498. URL: https://doi.org/10.1016/j.molstruc.2016.08.037

Татьяненко Л. В., Соколова Н. В., Мошковский Ю. Ш. Сравнительное исследование механизма действия биологически активных соединений на мембраносвязанную митохондриальную моноаминоксидазу и Ca2+, Mg2+ -зависимую АТФ-азу сакроплазматического ретикулума // Вопросы медициноской химии. 1982. Т. 28. С. 126–130.

Orestano G. The pharmacologic action of palladium chloride // Bollettino – Societa Italiana bi Biologia Sperimentale. 1933. Vol. 8. P. 1154–1156.

Martínez-Calvo M., Couceiro J. R., Destito P. et al. Intracellular Deprotection Reactions Mediated by Palladium Complexes Equipped with Designed Phosphine Ligands // ACS Catal. 2018. Vol. 8. P. 6055–6061. URL: https://doi.org/10.1021/acscatal.8b01606

Albert J., Cadena J. M., González A. et al. The first NH aldimineorganometallic compound. Isolation and crystal structure // Chem. Commun. 2003. Vol. 41. Iss. 4. P. 528–529. URL: https://doi.org/10.1039/B211808D

Денисов М. С., Дмитриев М. В., Ерошенко Д. В. и др. Катионно-анионные комплексы PdII с катионом адамантилимидазолия: синтез, структурные исследования и мао-ингибирующая активность // Журн. неорган. химии. 2019. Т. 64. № 1. С. 38–50. URL: https://doi.org/10.1134/S0044457X19010057

Rhee E. S., Shine H. J. Heavy-atom kinetic isotope effects and mechanism of the acid-catalyzed o-semidine and p-semidine rearrangements and disproportionation of 4,4'-dichlorohydrazobenzene // J. Am. Chem. Soc. 1986. Vol. 108. Iss. 5. P. 1000–1006. URL: https://doi.org/10.1021/ja00265a026

Mathews C. J., Smith P. J., Welton T. Novel palladium imidazole catalysts for Suzuki cross-coupling reactions // J. Mol. Catal. A: Chem. 2003. Vol. 206. Iss. 1–2. P. 77–82. URL: https://doi.org/10.1016/S1381-1169(03)00447-3

Cloete J., Mapolie S. F. Functionalized pyridinyl–imine complexes of palladium as catalyst precursors for ethylene polymerization // J. Mol. Catal. A: Chem. 2006. Vol. 243. Iss. 2. P. 221–225. URL: https://doi.org/10.1016/j.molcata.2005.08.002

Park S., Lee J., Jeong J. H. et al. Palladium(II) complexes containing N,N′-bidentate imine ligands derived from picolinaldehyde and substituted anilines: Synthesis, structure and polymerisation of methyl methacrylate // Polyhedron. 2018. Vol. 151. Iss. 1. P. 82–89. URL: https://doi.org/10.1016/j.poly.2018.05.031

García-Friaza G., Fernández-Botello A., Pérez J. M. Synthesis and characterization of palladium(II) and platinum(II) complexes with Schiff bases derivatives of 2-pyridincarboxyaldehyde. Study of their interaction with DNA // J. Inorg. Biochem. 2006. Vol. 100. Iss. 8. P. 1368–1377. URL: https://doi.org/10.1016/j.jinorgbio.2006.03.011

Cuevas J. V., García-Herbosa G. Base-catalyzed dehydrogenation of palladium(II) amino to imino complexes // Inorg. Chem. Commun. 1998. Vol. 1. Iss. 10. P. 372–374. URL: https://doi.org/10.1016/S1387-7003(98)00095-1

Laine T. V., Piironen U., Lappalainen K. et al. Pyridinylimine-based nickel(II) and palladium(II) complexes: preparation, structural characterization and use as alkene polymerization catalysts // J. Organomet. Chem. 2000. Vol. 606. Iss. 2. P. 112–124. URL: https://doi.org/10.1016/S0022-328X(00)00291-6

Laine T. V., Klinga M., Leskelä M. Synthesis and X‐ray Structures of New Mononuclear and Dinuclear Diimine Complexes of Late Transition Metals // Eur. J. Inorg. Chem. 1999. Vol. 1999. Iss. 6. P. 959–964. URL: https://doi.org/10.1002/(SICI)1099-0682(199906)1999:6<959::AID-EJIC959>3.0.CO;2-Z

Dong Y.-W., Fan R.-Q., Chen W. et al. Different conjugated system Zn(ii) Schiff base complexes: supramolecular structure, luminescent properties, and applications in the PMMA-doped hybrid materials // J. Chem. Soc., Dalton Trans. 2017. Vol. 46. P. 1266–1276. URL: https://doi.org/10.1039/C6DT04159K

Anglemyer A., Horvath H. T., Bero L. Healthcare outcomes assessed with observational study designs compared with those assessed in randomized trials // Cochrane Database Syst Rev. 2014. Vol. 29. P. 1–40. URL: https://doi.org/10.1002/14651858.MR000034.pub2

Миронов А. Н. Руководство по проведению доклинических исследований лекарственных средств. Часть первая / М.: Гриф и К, 2012. 944 с.

Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ / под ред. Хабриева Р. У. М.: ОАО «Издательство Медицина», 2005. 832 с.

Прозоровский В. Б. // Психофармакология и биологическая наркология. 2007. T. 7. № 3. С. 2090–2120. URL: https://www.elibrary.ru/item.asp?id=11691694

Thull U., Testa B. Screening of unsubstituted cyclic compounds as inhibitors of monoamine oxidases // Biochem. Pharmacol. 1994. Vol. 47. Iss. 22 P. 2307–2310. URL: https://doi.org/10.1016/0006-2952(94)90271-2

Andrade J. M., Passos C. S., Dresch R. R. et al. Chemical analysis, antioxidant, antichemotactic and monoamine oxidase inhibition effects of some pteridophytes from Brazil // Brazil. Phcog. Mag. 2014. Vol. 10. Iss. 37. P. 100–109. URL: https://doi.org/10.4103/0973-1296.127354

Lowry O. H., Rosebrough N. J., Farr A. L., Randall, R. J. Protein measurement with the Folin phenol reagent // J. Biol. Chem. 1951. Vol. 193. Iss. 1. P. 265–275. URL: https://pubmed.ncbi.nlm.nih.gov/14907713/

Gonçalves B. M. F., Salvador J. A. R., Marín S., Cas-cante M. Synthesis and anticancer activity of novel fluorinated asiatic acid derivatives // Eur. J. Med. Chem. 2016. Vol. 114. P. 101–117. URL: https://doi.org/10.1016/j.ejmech.2016.02.057

CrysAlisPro, Agilent Technologies, Version 1.171.37.33.

Sheldrick G.M. A short history of SHELX // ActaCryst. 2008. Vol. A64. P. 112–122. URL: http://scripts.iucr.org/cgi-bin/paper?S0108767307043930

Sheldrick G.M. Crystal structure refinement with SHELXL // ActaCryst. 2015. Vol. C71. 3–8. URL: http://scripts.iucr.org/cgi-bin/full_search

Dolomanov O.V., Bourhis L.J., Gildea R.J et al. OLEX2: a complete structure solution, refinement and analysis program // J. Appl. Cryst. 2009. Vol. 42. P. 339–341. URL: https://scripts.iucr.org/cgi-bin/full_search

Zhang W., Wu B., Sun W.-H. 21 - Synthesis, Characterization and Ethylene Reactivity of 2-Ester-6-iminopyridyl Metal Complexes // Studies in Surface Science and Catalysis. 2006. Vol. 161. P. 141–146. URL: https://doi.org/10.1016/S0167-2991(06)80445-3

Roy A. S., Saha P., Mitra P. et al. Unsymmetrical diimine chelation to M(II) (M = Zn, Cd, Pd): atropisomerism, pi–pi stacking and photoluminescence // J. Chem. Soc., Dalton Trans. 2011. Vol. 40. P. 7375–7384. URL: https://doi.org/10.1039/C1DT10270B

Motswainyana W. M., Onani M. O., Jacobs J., Meervelt L. V. Dichlorido{2-[(2,6-diethyl­phenyl)imino­meth­yl]quinoline-κ2N,N′}palladium(II) acetonitrile monosolvate // Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2012. Vol. 68. P. m356–m358. URL: https://doi.org/10.1107/S0108270112045970

Tanaka M., Kataoka H., Yano S. et al. Anti-cancer effects of newly developed chemotherapeutic agent, glycoconjugated palladium (II) complex, against cisplatin-resistant gastric cancer cells // BMC Cancer. 2013. Vol. 13. P. 237–346. URL: https://doi.org/10.1186/1471-2407-13-237

Tang Y., Zeng Y., Hu Q. et al. Efficient Catalyst for Both Suzuki and Heck Cross‐Coupling Reactions: Synthesis and Catalytic Behaviour of Geometry‐ Constrained Iminopyridylpalladium Chlorides // Adv. Synth. Catal. 2016. Vol. 358. Iss. 16. P. 2642–2651. URL: https://doi.org/10.1002/adsc.201600294

Lai Y., Zong Z., Tang Y. et al. Highly bulky and stable geometry-constrained iminopyridines: Synthesis, structure and application in Pd-catalyzed Suzuki coupling of aryl chlorides // Beilstein J. Org. Chem. 2017. Vol. 13. P. 213–221. URL: https://doi.org/10.3762/bjoc.13.24

Денисов М.С., Глушков В.А. Пиридин-иминовый комплекс палладия(II) на основе олеанана // Изв. АН. Сер. хим.. 2020. №. 10. С. 2013–2016. URL: https://www.elibrary.ru/item.asp?id=44150316

Glushkov V. A., Denisov M. S., Gorbunov A. A. et al. Adamantanyl-substituted PEPPSI-type palladium(II) N-heterocyclic carbene complexes: synthesis and catalytic application for CH activation of substituted thiophenes // Chem. Heterocycl. Compd. 2019. Vol. 55. P. 217–228. URL: https://doi.org/10.1007/s10593-019-02445-1

Zhang W., Tang X., Ma H. et al. {2‐[1‐(2,6‐Diisopropylphenylimino)ethyl]pyridyl}palladium Dibromide Polymorphs Originating from Different Br•••π and C–H•••Br Contacts // Eur. J. Inorg. Chem. 2008. Vol. 2008. Iss. 18. P. 2830–2836. URL: https://doi.org/10.1002/ejic.200800260

Pratihar P., Jha S., Mondal T. K. et al. Palladium(II) complexes of N-[(2-pyridyl)methyliden]-α(or β)-aminonaphthalene: Single crystal X-ray structure of di-chloro-N-[{(2-pyridyl)methyliden}-β-aminonaphthalene]palladium(II), Pd(β-NaiPy)Cl2, spectra and DFT, TD-DFT study // Polyhedron. 2007. Vol. 26. Iss. 20. P. 4328–4344. URL: https://doi.org/10.1016/j.poly.2007.05.049

Reddy E. R., Trivedi R., Sarma A. V. S. et al. Sugar-boronate ester scaffold tethered pyridyl-imine palladium(II) complexes: synthesis and their in vitro anticancer evaluation // J. Chem. Soc., Dalton Trans. 2015. Vol. 44. P. 17600–17616. URL: https://doi.org/10.1039/C5DT03266K

Song Y., Xu Z., Sun Q., et al. Chloro-bridged complexes of copper(II) and manganese(II) derived from unsymmetric bidentate ligands: synthesis, crystal structure and characterization // J. Coord. Chem. 2007. Vol. 60. Iss. 21. P. 2351–2359. URL: https://doi.org/10.1080/00958970701266484

Ronson T. K., Zarra S., Black S. P., Nitschke J. R. Metal–organic container molecules through subcomponent self-assembly // Chem. Commun. 2013. Vol. 49. P. 2476–2490. URL: https://doi.org/10.1039/C2CC36363A

Cloete J., Mapolie S. F. Functionalized pyridinyl–imine complexes of palladium as catalyst precursors for ethylene polymerization // J. Mol. Catal. A: Chem. 2006. Vol. 243. Iss. 2. P. 221–225. URL: https://www.sciencedirect.com/science/article/abs/pii/S1381116905005534

Zhang W., Sun W.-H., Wu B. et al. Synthesis of palladium complexes containing 2-methoxycarbonyl-6-iminopyridine ligand and their catalytic behaviors in reaction of ethylene and norbornene // J. Organomet. Chem. 2006. Vol. 691. P. 4759–.4767 URL: https://doi.org/10.1016/j.jorganchem.2006.07.026

Таблетки фосфатно-солевого буфера pH 7.4 https://paneco.ru/products/tabletki-fosfatno-solevogo-bufera-ph-7-4-2

Ефименко И. А., Чураков А. В., Иванова Н. А. Катионно-анионные комплексы палладия: влияние характера водородных связей на их стабильность и биологическую активность // Журн. неорган. химии. 2017. T. 62. № 11. C. 1476–1485. URL: https://www.elibrary.ru/item.asp?id=30509128

Zamora F., González V. M., Pérez J. M. et al. Palladium(II) 4,5‐Diphenylimidazole Cyclometalated Complexes: DNA Interaction // Appl. Organomet. Chem. 1997. Vol. 11. Iss. 6. P. 491–497. URL: https://doi.org/10.1002/(SICI)1099-0739(199706)11:6<491::AID-AOC602>3.0.CO;2-F

Casas J. S., Castiñeiras A., García‐Martínez E. et al. Synthesis and Cytotoxicity of 2‐(2′‐Pyridyl)benzimidazole Complexes of Palladium(II) and Platinum(II) // Z. Anorg. Allg. Chem. 2005. Vol. 631. P. 2258–2264. URL: https://doi.org/10.1002/zaac.200570054

Navarro M., Peña N. P., Colmenares I. et al. Synthesis and characterization of new palladium–clotrimazole and palladium–chloroquine complexes showing cytotoxicity for tumor cell lines in vitro // J. Inorg. Biochem. 2006. Vol. 100. Iss. 1. P. 152–157. URL: https://doi.org/10.1016/j.jinorgbio.2005.10.013

El-Sherif A. A. Synthesis and characterization of some potential antitumor palladium(II) complexes of 2-aminomethylbenzimidazole and amino acids // J. Coord. Chem. 2011. Vol. 64. Iss. 12. P. 2035–2055. https://doi.org/10.1080/00958972.2011.587004

Lee J.-Y., Lee J.-Y., Chang Y.-Y. et al. Palladium Complexes with Tridentate N-Heterocyclic Carbene Ligands: Selective “Normal” and “Abnormal” Bindings and Their Anticancer Activities // Organometallics. 2015. Vol. 34. Iss. 17. P. 4359–4368. URL: https://doi.org/10.1021/acs.organomet.5b00586

Al-Khodir F. A. I., Refat M. S. Synthesis, spectroscopic, thermal analyses, and anti-cancer studies of metalloantibiotic complexes of Ca(II), Zn(II), Pt(II), Pd(II), and Au(III) with albendazole drug // Russ. J. Gen. Chem. 2015. Vol. 85. P. 1734–1744. URL: https://doi.org/10.1134/S1070363215070270

Adam A. M. A. Synthesis, characterization, and cytotoxic in vitro studies of the antibiotic drug metronidazole complexed with Au(III), Fe(III), Pd(III), and Zn(II): Toward potent gold-drug nanoparticles in cancer chemotherapy // Russ. J. Gen. Chem. 2016. Vol. 86. P. 1137–1143. URL: https://doi.org/10.1134/S1070363216050261

Serratrice M., Maiore L., Zucca A. et al. Cytotoxic properties of a new organometallic platinum(ii) complex and its gold(I) heterobimetallic derivatives // J. Chem. Soc., Dalton Trans. 2016. Vol. 45. P. 579–590. URL: https://doi.org/10.1039/C5DT02714D

Ghdhayeb M. Z., Haque R. A., Budagumpi S. et al. Mono- and bis-N-heterocyclic carbene silver(I) and palladium(II) complexes: Synthesis, characterization, crystal structure and in vitro anticancer studies // Polyhedron. 2017. Vol. 121. Iss. 10. P. 222–230. URL: https://doi.org/10.1016/j.poly.2016.09.065

Cassells I., Stringer T., Hutton A. T. et al. Impact of various lipophilic substituents on ruthenium(II), rhodium(III) and iridium(III) salicylaldimine-based complexes: synthesis, in vitro cytotoxicity studies and DNA interactions // J. Biol. Inorg. Chem. 2018. Vol. 23. P. 763–774. URL: https://doi.org/10.1007/s00775-018-1567-3

Oecd guideline for testing of chemicals, U.S. National Institute of Environmental Health Sciences URL: https://ntp.niehs.nih.gov/iccvam/suppdocs/feddocs/oecd/oecd_gl423.pdf

Григоръян Г.А., Базян A.C. Экспериментальные модели болезни паркинсона на животных // Усп. Физиол. Наук. 2007. Т. 38. № 4. С. 80–88. URL: https://www.elibrary.ru/item.asp?id=9534832

Lee S.-J., Chung H.-Y., Lee I.-K. et al. Phenolics with Inhibitory Activity on Mouse Brain Monoamine Oxidase ( MAO ) from Whole Parts of Artemisia vulgaris L ( Mugwort ) // Food Sci. Biotechnol. 2000. Vol. 9. P. 179–182. URL: https://www.researchgate.net/publication/268338068_Phenolics_with_Inhibitory_Activity_on_Mouse_Brain_Monoamine_Oxidase_MAO_from_Whole_Parts_of_Artemisia_vulgaris_L_Mugwort

Finberg J. P., Rabey J. M. Inhibitors of MAO-A and MAO-B in Psychiatry and Neurology // Front Pharmacol. 2016. Vol. 7. P. 340–342. URL: https://doi.org/10.3389/fphar.2016.00340

Delogu G. L., Pintus F., Mayán L. et al. MAO Inhibitory Activity of Bromo-2- phenylbenzofurans: Synthesis, in vitro Study and Docking Calculations // MedChemCommun. 2017. Vol. 8. Iss. 9. P. 1788–1796.

References

Hong R., Li X. (2019), “Discovery of monoamine oxidase inhibitors by medicinal chemistry approaches” MedChemCommun. Vol. 10. P. 10–25.

Youdim M. B., Lavie L. (1994), “Selective MAO-A and B inhibitors, radical scavengers and nitric oxide synthase inhibitors in Parkinson's desease” Life Sciences. Vol. 55. Iss. 25– 26. P. 2077–2082.

Squires R. F. (1997), “The discovery of monoamine oxidases A and B” Voprosy meditsinskoi khimii. Vol. 43. Iss. 6. P. 433.

Kopin I. J. (1992), “Features of the Dopaminergic Neurotoxin MPTP” Annals of the New York Academy of Sciences. Vol. 648. P. 96– 104.

Chiba K., Trevor A., Castagnoli N. (1984) “Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase” Biochemical and Biophysical Research Communications. Vol. 120. Iss. 2. P. 574–578.

Garpenstrand H., Ekblom J., Forslund K. et al. (2000) “Platelet monoamine oxidase activity is related to MAOB intron 13 genotype” Journal of Neural Transmission. Vol. 107. P. 523–530.

Nicotra A., Pierucci F., Parvez H., Senatori O. (2004) “Monoamine Oxidase Expression During Development and Aging” NeuroToxicology. Vol. 25. Iss. 1–2. P. 155–165.

Chiuccariello L., Houle S., Miller L. et al. (2014) “Elevated Monoamine Oxidase A Binding During Major Depressive Episodes Is Associated with Greater Severity and Reversed Neurovegetative Symptoms” Neuropsycho- pharmacol. 2014. Vol. 39. P. 973–980.

Baldinger-Melich P., Gryglewski G., Philippe C. et al. (2009) “The effect of electroconvulsive therapy on cerebral monoamine oxidase A expression in treatment-resistant depression investigated using positron emission tomography” Brain Stimulation. Vol. 12. Iss. 1. P. 714– 723.

Lazareva N. F. (2011) “N-(silylmethyl)amines, -amides, and -amino acids: biological activity and prospects in drug synthesis” Russian Chemical Bulletin. Vol. 60. P. 615–632.

Chirkova Z. V., Tukhvatshin R. S., Filimonov S. I. et al. (2013) “Synthesis of 7,8- dicyanopyrimido[2,1-b][1,3]benzothiazoles” Mendeleev Communications. Vol. 23. Iss. 4. P. 215–216.

Smolina A. V., Kotelnikova R. A., Poletaeva D. A. et al. (2016) “Influence of water-soluble derivatives of [60]fullerene on catalytic activity of monoaminе oxidase B and their membranotropic properties” Russian Chemical Bulletin. Vol. 65. P. 784–789.

Nikolaeva N. S., Soldatova Y. V., Smolina A. V. et al. (2017) “Effect of fluorinated tetrahydrocarbazole derivatives on the enzymes of oxidative deamination of biogenic amines and on the process of lipid peroxidation” Russian Chemical Bulletin. Vol. 66. Iss. 5. P. 870–874.

Chirkova Z. V., Kabanova M. V., Filimonov S. I. et al. (2018) “An investigation of the monoamine oxidase inhibition properties of pyr- rolo[3,4‐f]indole‐5,7‐dione and indole‐5,6‐ dicarbonitrile derivatives” Drug Development Research. Vol. 79. Iss. 2 P. 81–93.

Altintop M. D., Sever B., Osmaniye D. et al. (2018) “Design, synthesis, in vitro and in silico evaluation of new pyrrole derivatives as monoamine oxidase inhibitors” Archiv der Pharmazie. Vol. 35. Iss. 7. P. 1800082.

Shetnev A., Osipyan A., Baykov S. et al. (2019) “Novel monoamine oxidase inhibitors based on the privileged 2-imidazoline molecular framework” Bioorganic & Medicinal Chemistry Letters. Vol. 29. Iss. P. 40–46.

Shetnev A., Shlenev R., Efimova J. et al. (2019) “1,3,4-Oxadiazol-2-ylbenzenesulfonamides as privileged structures for the inhibition of monoamine oxidase B” Bioorganic & Medicinal Chemistry Letters. Vol. 29. Iss. 21. P. 126677–126678.

Chirkova Z. V., Kabanova M. V., Filimonov S. I. et al. (2019) “Optimization of pyrrolo[3,4‐ f]indole‐5,7‐dione and indole‐5,6‐ dicarbonitrile derivatives as inhibitors of monoamine oxidase” Drug Development Research. Vol. 80. Iss. 7. P. 970–980.

Shetnev A., Baykov S., Kalinin S. et al. (2019) “1,2,4-Oxadiazole/2-Imidazoline Hybrids: Multi-target-directed Compounds for the Treatment of Infectious Diseases and Cancer” International Journal of Molecular Sciences. 2019. Vol. 20. Iss. 7. P. 1699–1699.

Gama N. H., Elkhadir A. Y. F., Gordhan B. G. et al. (2016) “Activity of phosphino palladium(II) and platinum(II) complexes against HIV-1 and Mycobacterium tuberculosis” Bio- Metals. 2016. Vol. 29. P. 637–650.

Liu W., Gust R. (2016) “Update on metal N- heterocyclic carbene complexes as potential antitumor metallodrugs” Coordination Chemistry Reviews. 2016. Vol. 329. Iss. 15. P. 191– 213.

Soman S., Keatinge M., Moein M. et al. (2017) “Inhibition of the mitochondrial calcium uniporter rescues dopaminergic neurons in pink1−/− zebrafish” European Journal of Neuroscience. Vol. 45. lss. 4. P. 528–535.

Rodionov А. N., Snegur L. V., Simenel А. А. et al. (2017) “Ferrocene-modified amino acids: synthesis and in vivo bioeffects on hippocam- pus” Russian Chemical Bulletin. Vol. 66. P. 136.

Faingold I. I., Kotelnikova R. A., Smolina A.V. et al. (2019) “antioxidant activity of tetranitrosyl iron complex with thiosulfate ligands and its effect on catalytic activity of mitochondrial enzymes in vitro” Doklady Akademii Nauk. Vol. 488. Iss. 1. P. 342–345.

Yang D.-d., Wang R., Zhu J.-l. et al. (2017) “Synthesis, crystal structures, molecular docking, in vitro monoamine oxidase-B inhibitory activity of transition metal complexes with 2- {4-[bis (4-fluorophenyl)methyl]piperazin-1-yl} acetic acid” Journal of Molecular Structure. 1128. Iss. 15. P. 493–498.

Tat’yanenko L.V., Sokolova N.V., Moshkovsky Y.S. (1982), “Mechanism of effect of bio- logically active substances on the membranebound mitochondrial monoamine oxidase and Ca2+, Mg2+ - dependent ATPase in sarcoplasmic reticulum” Voprosy meditsinskoi khimii. Vol. 28. P. 126–131.

Orestano G. (1933) “The pharmacologic action of palladium chloride” Bollettino – Societa Italiana bi Biologia Sperimentale Vol. 8. P. 1154–1156.

Martínez-Calvo M., Couceiro J. R., Destito P. et al. (2018) “Intracellular Deprotection Reactions Mediated by Palladium Complexes Equipped with Designed Phosphine Ligands” ACS Catalysis. 2018. Vol. 8. P. 6055–6061.

Albert J., Cadena J. M., González A. et al. (2003) “The first NH aldimineorganometallic compound. Isolation and crystal structure”

ChemComm. Vol. 41. Iss. 4. P. 528–529.

Denisov M. S., Dmitriev M. V., Eroshenko D. V. et al. (2019) “Cationic—Anionic Pd(II) Complexes with Adamantylimidazolium Cation: Synthesis, Structural Study, and MAO- Inhibiting Activity” Russian Journal of Inor-

ganic Chemistry. Vol. 64. Iss. 1. P. 56–67.

Rhee E. S., Shine H. J. (1986) “Heavy-atom kinetic isotope effects and mechanism of the acid-catalyzed o-semidine and p-semidine rearrangements and disproportionation of 4,4'- dichlorohydrazobenzene” Journal of the American Chemical Society. Vol. 108. Iss. 5. P.1000–1006.

Mathews C. J., Smith P. J., Welton T. (2003) “Novel palladium imidazole catalysts for Suzuki cross-coupling reactions” Journal of Molecular Catalysis A: Chemical. Vol. 206. Iss. 1–2. P. 77–82.

Cloete J., Mapolie S. F. (2006) “Functionalized pyridinyl–imine complexes of palladium as catalyst precursors for ethylene polymerization” Journal of Molecular Catalysis A: Chemical. Vol. 243. Iss. 2. P. 221–225.

Park S., Lee J., Jeong J. H. et al. (2018) “Palladium(II) complexes containing N,N′- bidentate imine ligands derived from picolinaldehyde and substituted anilines: Synthesis, structure and polymerisation of methyl methacrylate” Polyhedron. Vol. 151. Iss. 1. P. 82– 89.

García-Friaza G., Fernández-Botello A., Pérez J. M. (2006) “Synthesis and characterization of palladium(II) and platinum(II) complexes with Schiff bases derivatives of 2- pyridincarboxyaldehyde. Study of their interaction with DNA” Journal of Inorganic Biochemistry. Vol. 100. Iss. 8. P. 1368–1377.

Cuevas J. V., García-Herbosa G. (1998) “Base-catalyzed dehydrogenation of palladium(II) amino to imino complexes” Inorganic Chemistry Communications. Vol. 1. Iss. 10. P. 372–374.

Laine T. V., Piironen U., Lappalainen K. et al. (2000) “Pyridinylimine-based nickel(II) and palladium(II) complexes: preparation, structural characterization and use as alkene polymerization catalysts” Journal of Organometallic Chemistry. Vol. 606. Iss. 2. P. 112–124.

Laine T. V., Klinga M., Leskelä M. (1999) “Synthesis and X‐ray Structures of New Mononuclear and Dinuclear Diimine Complexes of Late Transition Metals” European Journal of Inorganic Chemistry. Vol. 1999. Iss. 6. P. 959– 964.

Dong Y.-W., Fan R.-Q., Chen W. et al. (2017) “Different conjugated system Zn(II) Schiff base complexes: supramolecular structure, luminescent properties, and applications in the PMMA-doped hybrid materials” Dalton Transactions. Vol. 46. P. 1266–1276.

Anglemyer A., Horvath H. T., Bero L. (2014) “Healthcare outcomes assessed with observational study designs compared with those as- sessed in randomized trials” Cochrane Database of Systematic Reviews. 2014. Vol. 29. P. 1–40.

Mironov A. N. (2012), Rukovodstvo po provedeniyu doklinicheskikh issledovanii le- karstvennykh sredstv. Chast’ pervaya [Guide- lines for conducting preclinical studies of medicines. Part one ]/ M.: Grif and C, 944 p. (In Russ)

Rukovodstvo po experemental’nomu (doklinicheskomu) izucheniyu farmakologicheskikh veshchestv [Guidelines for ex- perimental (preclinical) study of pharmacological substances] (2005) Ed. Khavievа R. U. M.: OAO «Izdatelstvo Meditsina», 832 P. (In Russ)

Prozorovskii V.B. (2007) “Statistic processing of data of pharmacological investigations” Psychopharmacology and Biological Narcology. Vol. 7. Iss. 3. P. 2090–2120.

Thull U., Testa B. (1994) “Screening of unsubstituted cyclic compounds as inhibitors of monoamine oxidases” Biochemical Pharmacology. Vol. 47. Iss. 22 P. 2307–2310.

Andrade J. M., Passos C. S., Dresch R. R. et al. (2014) “Chemical analysis, antioxidant, antichemotactic and monoamine oxidase inhibition effects of some pteridophytes from Brazil” Pharmacognosy Magazine. Vol. 10. Iss. 37. P. 100–109.

Lowry O. H., Rosebrough N. J., Farr A. L., Randall, R. J. (1951) “Protein measurement with the Folin phenol reagent” The Journal of Biological Chemistry. Vol. 193. Iss. 1. P. 265– 275.

Gonçalves B. M. F., Salvador J. A. R., Marín S., Cas-cante M. (2016) “Synthesis and anticancer activity of novel fluorinated asiatic acid derivatives” European Journal of Medicinal Chemistry. Vol. 114. P. 101–117.

CrysAlisPro, Agilent Technologies, Version 1.171.37.33.

Sheldrick G.M. (2008) “A short history of SHELX” Acta Crystallographica Section A. Vol. A64. P. 112–122.

Sheldrick G.M. (2015) “Crystal structure refinement with SHELXL” Acta Crystallographica Section C. Vol. C71. 3–8.

Dolomanov O.V., Bourhis L.J., Gildea R.J et al. (2009) “OLEX2: a complete structure solution, refinement and analysis program” Journal of Applied Crystallography. 2009. Vol. 42. P. 339–341.

Zhang W., Wu B., Sun W.-H. (2006) “21 - Synthesis, Characterization and Ethylene Reactivity of 2-Ester-6-iminopyridyl Metal Complexes” Studies in Surface Science and Catalysis. Vol. 161. P. 141–146.

Roy A. S., Saha P., Mitra P. et al. (2011) “Unsymmetrical diimine chelation to M(II) (M = Zn, Cd, Pd): atropisomerism, pi–pi stacking and photoluminescence” Dalton Transactions. Vol. 40. P. 7375–7384.

Motswainyana W. M., Onani M. O., Jacobs J., Meervelt L. V. (2012) “Dichlorido{2-[(2,6- diethyl-phenyl)imino-meth-yl]quinoline- κ2N,N′}palladium(II) acetonitrile monosolvate” Acta Crystallographica Section C. Vol. 68. P. m356–m358.

Tanaka M., Kataoka H., Yano S. et al. (2013) “Anti-cancer effects of newly developed chemotherapeutic agent, glycoconjugated palladium (II) complex, against cisplatin-resistant gastric cancer cells” // BMC Cancer. Vol. 13. P. 237–346.

Tang Y., Zeng Y., Hu Q. et al. (2016) “Efficient Catalyst for Both Suzuki and Heck Cross‐Coupling Reactions: Synthesis and Catalytic Behaviour of Geometry‐ Constrained Iminopyridylpalladium Chlorides” Advanced Synthesis and. Catalysis. Vol. 358. Iss. 16. P. 2642–2651.

Lai Y., Zong Z., Tang Y. et al. (2017) “Highly bulky and stable geometry-constrained iminopyridines: Synthesis, structure and application in Pd-catalyzed Suzuki coupling of aryl chlorides” Beilstein Journal of Organic Chemistry. Vol. 13. P. 213–221.

Denisov M.S., Glushkov V.A. (2020), “Pyridine imine palladium(II) complex based on oleanane” Russian Chemical Bulletin. Vol. 69. Iss. 10. P. 2013–2016.

Glushkov V. A., Denisov M. S., Gorbunov A. A. et al. (2019) “Adamantanyl-substituted PEPPSI-type palladium(II) N-heterocyclic carbene complexes: synthesis and catalytic application for CH activation of substituted thiophenes” Chemistry of Heterocyclic Compounds. Vol. 55. P. 217–228.

Zhang W., Tang X., Ma H. et al. (2008) “{2‐ [1‐(2,6‐Diisopropylphenylimino)ethyl]- pyridyl}palladium Dibromide Polymorphs Originating from Different Br···π and C– H···Br Contacts” European Journal of Inorganic Chemistry. Vol. 2008. Iss. 18. P. 2830– 2836.

Pratihar P., Jha S., Mondal T. K. et al. (2007) “Palladium(II) complexes of N-[(2- pyridyl)methyliden]-α(or β)-aminonaphthalene: Single crystal X-ray structure of di- chloro-N-[{(2-pyridyl)methyliden}-β-amino- naphthalene]palladium(II), Pd(β-NaiPy)Cl2, spectra and DFT, TD-DFT study” Polyhedron. Vol. 26. Iss. 20. P. 4328–4344.

Reddy E. R., Trivedi R., Sarma A. V. S. et al. (2015) “Sugar-boronate ester scaffold tethered pyridyl-imine palladium(II) complexes: synthesis and their in vitro anticancer evaluation” Dalton Transactions. 2015. Vol. 44. P. 17600– 17616.

Song Y., Xu Z., Sun Q., et al. (2007) “Chloro- bridged complexes of copper(II) and manganese(II) derived from unsymmetric bidentate ligands: synthesis, crystal structure and characterization” Journal of Coordination Chemistry. Vol. 60. Iss. 21. P. 2351–2359.

Ronson T. K., Zarra S., Black S. P., Nitschke J. R. (2013) “Metalorganic container molecules through subcomponent self-assembly” Chem- Comm. Vol. 49. P. 2476–2490.

Cloete J., Mapolie S. F. (2006) “Functionalized pyridinyl–imine complexes of palladium as catalyst precursors for ethylene polymerization” Journal of Molecular Catalysis A: Chemical. 2006. Vol. 243. Iss. 2. P. 221–225.

Zhang W., Sun W.-H., Wu B. et al. (2006) “Synthesis of palladium complexes containing 2-methoxycarbonyl-6-iminopyridine ligand and their catalytic behaviors in reaction of ethylene and norbornene” Journal of Organometallic Chemistry. 2006. Vol. 691. P. 4759– .4767

Phosphate-buffered saline pH 7.4 URL: https://paneco.ru/products/tabletki-fosfatno- solevogo-bufera-ph-7-4-2

Efimenko I. A., Churakov A. V., Ivanova N. A. et al. (2017) “Cationic–anionic palladium complexes: effect of hydrogen bond character on their stability and biological activity” Russian Journal of Inorganic Chemistry. V. 62. P. 1469–1478.

Zamora F., González V. M., Pérez J. M. et al. (1997) “Palladium(II) 4,5‐Diphenylimidazole Cyclometalated Complexes: DNA Interaction” Applied Organometallic Chemistry. Vol. 11. Iss. 6. P. 491–497.

Casas J. S., Castiñeiras A., García‐Martínez E. et al. (2005) “Synthesis and Cytotoxicity of 2‐(2′‐Pyridyl)benzimidazole Complexes of Pal- ladium(II) and Platinum(II)” Zeitschrift für anorganische und allgemeine Chemie. Vol. 631. P. 2258–2264.

Navarro M., Peña N. P., Colmenares I. et al. (2006) “Synthesis and characterization of new palladium–clotrimazole and palladium– chloroquine complexes showing cytotoxicity for tumor cell lines in vitro” Journal of Inorganic Biochemistry. Vol. 100. Iss. 1. P. 152– 157.

El-Sherif A. A. (2011) “Synthesis and characterization of some potential antitumor palladium(II) complexes of 2-aminomethyl- benzimidazole and amino acids” Journal of Coordination Chemistry. 2011. Vol. 64. Iss. 12. P. 2035–2055.

Lee J.-Y., Lee J.-Y., Chang Y.-Y. et al. (2015) “Palladium Complexes with Tridentate N- Heterocyclic Carbene Ligands: Selective “Normal” and “Abnormal” Bindings and Their Anticancer Activities” Organometallics. 2015. Vol. 34. Iss. 17. P. 4359–4368.

Al-Khodir F. A. I., Refat M. S. (2015) “Synthesis, spectroscopic, thermal analyses, and anticancer studies of metalloantibiotic complexes of Ca(II), Zn(II), Pt(II), Pd(II), and Au(III) with albendazole drug” Russian Journal of General Chemistry. Vol. 85. P. 1734–1744.

Adam A. M. A. (2016) “Synthesis, characterization, and cytotoxic in vitro studies of the antibiotic drug metronidazole complexed with Au(III), Fe(III), Pd(III), and Zn(II): Toward potent gold-drug nanoparticles in cancer chemotherapy” Russian Journal of General Chemistry. Vol. 86. P. 1137–1143.

Serratrice M., Maiore L., Zucca A. et al. (2016) “Cytotoxic properties of a new organometallic platinum(II) complex and its gold(I) heterobimetallic derivatives” Dalton Transactions. 2016. Vol. 45. P. 579–590.

Ghdhayeb M. Z., Haque R. A., Budagumpi S. et al. (2017) “Mono- and bis-N-heterocyclic carbene silver(I) and palladium(II) complexes: Synthesis, characterization, crystal structure and in vitro anticancer studies” Polyhedron. Vol. 121. Iss. 10. P. 222–230.

Cassells I., Stringer T., Hutton A. T. et al. (2018) “Impact of various lipophilic substituents on ruthenium(II), rhodium(III) and iridium(III) salicylaldimine-based complexes: synthesis, in vitro cytotoxicity studies and DNA interactions” Journal of Biological Inorganic Chemistry. Vol. 23. P. 763–774.

Oecd guideline for testing of chemicals, U.S. National Institute of Environmental Health Sciences.

Grigor’yan G.A., Bazyan A.S. (2007) “Eksper- imentalinyye modeli bolezni parkinsona na zhivotnykh” Uspekhi Fiziologichesikh nauk Vol. 38. Iss. 4. P. 80–88. (in Russ)

Lee S.-J., Chung H.-Y., Lee I.-K. et al. (2000) “Phenolics with Inhibitory Activity on Mouse Brain Monoamine Oxidase (MAO) from Whole Parts of Artemisia vulgaris L ( Mugwort Food Science and Biotechnology. Vol. 9. P. 179–182.

Finberg J. P., Rabey J. M. (2016) “Inhibitors of MAO-A and MAO-B in Psychiatry and Neurology” Frontiers in Pharmacology. Vol. 7. P. 340–342.

Delogu G. L., Pintus F., Mayán L. et al. (2017) “MAO Inhibitory Activity of Bromo-2- phenylbenzofurans: Synthesis, in vitro Study and Docking Calculations” MedChemCom- mun. Vol. 8. Iss. 9. P. 1788–1796.

Загрузки

Опубликован

2021-04-08

Как цитировать

Денисов (Mikhail S. Denisov) М. С., Гагарских (Olga N. Gagarskikh) О. Н., & Утушкина (Taisiya A. Utushkina) Т. А. (2021). Пиридиниминовые комплексы палладия (II): синтез и ингибирование моноаминоксидазы. Вестник Пермского университета. Серия «Химия», 11(1). https://doi.org/10.17072/2223-1838-2021-1-30-58

Выпуск

Раздел

Органическая химия