Methods to improve mechanical characteristics of ceramics on the basis of zirconium and hafnium diborides (Review)
DOI:
https://doi.org/10.17072/2223-1838-2020-2-180-190Keywords:
zirconium diboride, hafnium diboride, ultra-high temperature ceramics, crack resistance, mechanical strength.Abstract
This paper describes the main methods for improving the mechanical properties of ceramic materials based on zirconium and hafnium diborides, such as strength and crack resistance. Particular attention is paid to the influence of the sintering method, as well as additives introduced into the powder composition, in particular hard fibers, second-phase powder particles and “whiskers”, on the mechanical characteristics of the ceramics. On the basis of the analysis of literature data, it is shown that the spark plasma sintering (SPS) method allows to obtain ceramic samples with increased mechanical characteristics due to their high density and low defects. The addition of silicon carbide filamentous crystals or fibers to the ceramics can increase the crack resistance of the sintered material up to 6.0–8.5 MPa×m1/2. These conclusions can be useful in the development of ultra-high-temperature ceramic materials.References
Житнюк С.В. Бескислороные керамические материалы для аэрокосмический техники (обзор) // Электронный научный журнал "ТРУДЫ ВИАМ". 2018. № 8.
Rangaray L., Surecha S.J., Divakar C., and Jayaram V. Low-Temperature Processing of ZrB2-ZrC Composites by Reactive Hot Pressing // Metallurgical and Materials Transactions A. 2008. V. 39(7). P. 1496–1505.
Acicbe R.B., Goller G. Densification behavior and mechanical properties of spark plasma-sintered ZrC-TiC and ZrC-TiC-CNT composites // J. Mater Sci. 2013. 48. P. 2388–2393.
Bellosi A., Monteverde F. Fabrication and properties of zirconium diboride-based ceramics for UHT applications // Proc. 4th. European Workshop. «Hot Structures and Thermal Protection Systems for Space Vehicles» Palermo, Italy 26-29 November. 2002. P.65–71.
Самсонов Г.В., Серебрякова Т.И., Неронов В.И. Бориды. М.: Атомиздат, 1975. 376 с.
Li Weiguo, Cheng Tianbao, Li Dingyu, and Fang Daining. Numerical Simulation for Thermal Shock Resistance of Ultra-High Temperature Ceramics Considering the Effects of Initial Stress Field // Advances in Materials Science and Engineering. 2011. P. 1–7.
Пат. 2559485 Российская Федерация МПК С01В 35/04, С01G25/00. Способ получения диборида циркония / Ю.Л. Крутский, К.Д. Дюкова, А.Г. Баннов, П.Б. Курмашов, В.В. Соколов, А.Ю. Пичугин, В.В. Кузнецова. № 2014111028/05; заявл. 2014.03.21; опубл. 2015.08.10
Paul A., Jayaseelan D.D., Venugopal S., Zapata-Solvas E. et. al. UHTC composites for hypersonic applications // American Ceramic Society Bulletin. 2012. Vol. 91, №1. P. 22–28.
Bellosi A., Guicciardi S., Medri V., Monteverde F. et al. Processing and properties of ultra-refractory composites based on Zr- and Hf-borides: state of the art and perspectives // Boron rich solids: sensors, ultra high temperature ceramics, thermoelectrics, armor (Eds.: Orlovskaya N. and Lugovy M.). 2011. P. 147–160.
Yadhukulakrishnan Govindaraajan B., Sriharsha Karumuri, et al. Spark plasma sintering of graphene reinforced zirconium diboride ultra-high temperature ceramic composites // Ceramics International. 2013. 39. P. 6637–6646.
Sonber J.K., Murthy T.S.R. Ch., Subramanian C. et. al. Investigations on synthesis of ZrB2 and development of new composites with HfB2 and TiSi2 // Int. Journal of Refractory Metals and Hard Materials. 2011. 29. P. 21–30.
Orrù R., Cao G. Comparison of reactive and non-reactive spark plasma sintering routes for the fabrication of monolithic and composite ultra high temperature ceramics (UHTC) materials // Materials. 2013. 6 (5). P. 1566–1583.
Григорьев О.Н., Фролов Г.А., Евдокименко Ю.И. и др. Ультравысокотемпературная керамика для авиационно-космической техники // Авиационно-космическая техника и технология. 2012. № 8(95). C. 119-128.
Балкевич Л.В. Техническая керамика. 2 изд. перераб. и доп. – М.: Стройиздат. 1984. 256 с.
Перевислов С.Н., Несмелов Д.Д., Томкович М.В. Получение материалов на основе SiC и Si3N4 методом высокоимпульсного плазменного спекания // Физика твёрдого тела Вестник Нижегородского университета им. Н.И. Лобачевского. 2013. № 2 (2). C. 107–114.
Zamora V., Ortiz A.L., Guiberteau F., Nygren M. Spark-plasma sintering of ZrB2 ultra-high-temperature ceramics at lower temperature via nanoscale crystal refinement // Journal of the European Ceramic Society. 2012. 32. P. 2529–2536.
Болдин М.С., Чувильдеев В.Н. Исследование влияния режимов электроимпульсного плазменного спекания на структуру и физико-механические свойства керамик на основе оксида алюминия // Сборник тезисов XVIII Международной научно-практической конференции «Современные техника и технологии» Секция 6: Материаловедение. Томск. 9-13 апреля 2012. С. 123–124.
Zhang R., He R., Zhang X. and Fang D. Microstructure and mechanical properties of ZrB2-SiC composites prepared by gelcasting and pressureless sintering // Int. J. of Refractory Metals and Hard Materials. 2014. 43. P. 83–88.
Monteverde F. Ultra-high temperature HfB2–SiC ceramics consolidated by hot-pressing and spark plasma sintering // Journal of Alloys and Compounds. 2007. 428. P. 197–205.
Mele´ndez-Martı´nez J.J., Domı´nguez-Rodrı´guez A., Monteverde F. et. al. Characterisation and high temperature mechanical properties of zirconium boride-based materials // Journal of the European Ceramic Society. 2002. 22. P. 2543–2549.
Овидько И.А., Шейнерман А.Г., Aifantis E.C. Механика процессов роста трещин в нанокерамиках // Materials Physics and Mechanics. 2011. 12. C. 1–29.
Wu W-W., Wang Zh., Kan Y-M. ZrB2-MoSi2 composites toughened by elongated ZrB2 grains via reactive hot pressing // Scripta Mater. 2009. Vol. 61, Iss. 3. P. 316–319.
Guicciardi S., Silvestroni L., Nygren M., Sciti D. Microstructure and toughening mechanisms in spark plasma-sintered of ZrB2 ceramics reinforced by SiC whiskers or SiC-chopped fibers // Journal of the American Ceramic Society. 2010. 93. P. 2384–2391.
Yang F., Zhang X., Han J., Du S.. Mechanical properties of short carbon fiber reinforced ZrB2-SiC ceramic matrix composites // Materials Letters. 2008. 62. P. 2925–2927.
Pienti L., Sciti D., Silvestroni L. and Guicciardi S. Effect of Milling on the Mechanical Properties of Chopped SiC Fiber-Reinforced ZrB2 // Materials. 2013. 6. P.1980–1993.
Пат. 8409491 B1 США МКИ B28B1/00, B28B3/00, B28B5/00, C04B33/32, C04B35/00, B32B9/00, B32B19/00. In-situ formation of reinforcement phases in ultra high temperature ceramic composites / The United States of America as represented by the Administrator of National Aeronautics & Space Administration (NASA). – 13/215206; заявл.: 22.08.2011.
Пат. 102173813 (A) Китай МКИ C04B35/58, C04B35/622. Preparation method of complex phase ceramic material containing zirconium boride / Harbin Institute of Technology. – 2011143860; заявл. 23.02.2011.
Xiao K., Guo Q., Liu Zh. et. al. Influence of fiber coating thickness on microstructure and mechanical properties of carbon fiber-reinforced zirconium diboride based composite // Ceramic International. 2014. 40. P. 1539–1544.
Матренин С.В., Ильин А.П., Толбанова Л.О. и др. Активирование спекания оксидной керамики добавками нанодисперсных порошков // Известия Томского политехнического университета. 2010. Т. 317, №3: Химия. С. 24–28.
Stepanov E.I., Grigoriev M.V., Kirko V.I. Influence of Ultra Dispersive Al2O3 Additions on the Physical- Mechanical Properties of Corundum Ceramics // Journal of Siberian Federal University. Engineering & Technologies. 2008. Vol. 1. Issue 2. P. 162–167.
Ang C., Seeber A., Wang K., and Cheng Y-B. Modification of ZrB2 powders by a sol-gel ZrC precursor – A new approach for ultra high temperature ceramic composites // J. of Asian Ceramic Society. 2013. 1. P. 77–85.
Ang C., Williams Т., Vowels D., Wood Ch. et al. Influence of sol-gel derived ZrO2 and ZrC additions on microstructure and properties of ZrB2 composites // J. Eur. Ceram. Soc. 2014. (34), №13. P. 3139–3149.
Takashi Goto Applications of Spark Plasma Sintering // 2nd International school-seminar “Perspective technology of materials consolidation with electromagnetic fields” 1st Russia-Japan SPS Workshop. Moscow, Russia, May 20–22, 2013.
Xinghong Zhang, Lin Xu, Shanyi Du, Chengyong Liu, et al. Spark plasma sintering and hot pressing of ZrB2–SiCW ultra-high temperature ceramics // Journal of Alloys and Compounds. 2008. 466. P. 241–245.
References
Zhitnuk, S.V. (2018), “Non-oxygen ceramic materials for aerospace engineering (review)”, Electronnyi nauchnyi zhurnal “Trudy VIAM”, no. 8. (In Russ.)
Rangaray, L., Surecha, S.J., Divakar, C., and Jayaram, V. (2008), “Low-Temperature Pro-cessing of ZrB2-ZrC Composites by Reactive Hot Pressing”, Metallurgical and Materials Transactions A, vol. 39 (7), pp. 1496-1505.
Acicbe, R.B., Goller, G. (2013), “Densification behavior and mechanical properties of spark plasma-sintered ZrC-TiC and ZrC-TiC-CNT composites”, J. Mater Sci., no. 48, pp. 2388-2393.
Bellosi A., Monteverde F. (2002), “Fabrication and properties of zirconium diboride-based ceramics for UHT applications”, Proc. 4th. European Workshop. «Hot Structures and Thermal Protec-tion Systems for Space Vehicles», Palermo, Italy, 26-29 November, pp.65-71.
Samsonov, G.V., Serebriakova, T.I., Neronov, V.I. (1975) Boridy [Borides]. Atomizdat, Moscow, Russia.
Li Weiguo, Cheng Tianbao, Li Dingyu, and Fang Daining (2011), “Numerical Simulation for Thermal Shock Resistance of Ultra-High Temperature Ceramics Considering the Effects of Initial Stress Field”, Advances in Materials Science and Engineering, pp. 1-7.
Krutskiy, Iu.L., Dukova, K.D., Bannov, A.G. et.al., FGBOU VPO “Novosibirskii gosudar-stvennyi tehnicheskii universitet”, FGBUN “Institut neorganicheskoi himii im. A.V. Nikolaeva” SO RAN (2015), Sposob polucheniia diborida tsirkoniia [Method of zirconium diboride production], RU, Pat. 2559485. (In Russ.)
Paul, A., Jayaseelan, D.D., Venugopal, S., Zapata-Solvas, E. et. al. (2012), “UHTC compo-sites for hypersonic applications”, American Ceramic Society Bulletin, vol. 91, no. 1, pp. 22–28.
Bellosi, A., Guicciardi, S., Medri, V., Monteverde, F. et al. (2011), “Processing and proper-ties of ultra-refractory composites based on Zr- and Hf-borides: state of the art and perspectives”, in Orlovskaya N. and Lugovy M. (eds.), Boron rich solids: sensors, ultra high temperature ceramics, thermoelectrics, armor, pp. 147–160.
Yadhukulakrishnan Govindaraajan, B., Sriharsha Karumuri, et al. (2013), “Spark plasma sintering of graphene reinforced zirconium diboride ultra-high temperature ceramic composites”, Ce-ramics International, no. 39, pp. 6637–6646.
Sonber, J.K., Murthy, T.S.R. Ch., Subramanian, C. et. al. (2011), “Investigations on synthe-sis of ZrB2 and development of new composites with HfB2 and TiSi2”, Int. Journal of Refractory Met-als and Hard Materials, no. 29, pp. 21–30.
Orrù, R., Cao, G. (2013), “Comparison of reactive and non-reactive spark plasma sintering routes for the fabrication of monolithic and composite ultra high temperature ceramics (UHTC) materi-als”, Materials, no. 6 (5), pp. 1566–1583.
Grigor’ev, O.N., Frolov, G.V., Evdokimenko, Iu.I. et. al. (2012), “Ultra-high temperature ceramics for aerospace industry”, Aviatsionno-kosmicheskaia tehnika i tehnologiia, no. 8 (95), pp. 119–128. (In Russ.)
Balkevich , L.V. (1984), Tehnicheskaia keramika [Technical ceramics], 2nd ed. Stroyizdat, Moscow, Russia, 256 p. (In Russ.)
Perevislov, S.N., Nesmelov, D.D., Tomkovich, M.V. (2013), “Production of the materials based on SiC and Si3N4 with the use of high-pulse plasma sintering method”, Fizika tvierdogo tela, Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, no. 2 (2), pp. 107–114. (In Russ.)
Zamora V., Ortiz A.L., Guiberteau F., Nygren M. (2012), “Spark-plasma sintering of ZrB2 ultra-high-temperature ceramics at lower temperature via nanoscale crystal refinement”, Journal of the European Ceramic Society, no. 32, pp. 2529–2536.
Boldin, M.S., Chuvil’deev, V.N. (2012), “Investigation of the influence of electro-pulse plasma sintering modes on the structure and physical and mechanical properties of aluminum oxide-based ceramics”, Mezhdunarodnaia nauchno-prakticheskaia konferentsiia “Sovremennye tehnika i tehnologii” Sektsiia 6: Materialovedenie, [International scientific and practical conference "Modern engineering and technologies" Section 6: Material Science], Tomsk, Russia, 9-13 April, pp. 123-124. (In Russ.)
Zhang, R., He, R., Zhang, X. and Fang, D. (2014), “Microstructure and mechanical proper-ties of ZrB2-SiC composites prepared by gelcasting and pressureless sintering”, Int. J. of Refractory Metals and Hard Materials, no. 43, pp. 83-88.
Monteverde, F. (2007), “Ultra-high temperature HfB2–SiC ceramics consolidated by hot-pressing and spark plasma sintering”, Journal of Alloys and Compounds, 428, pp. 197-205.
Mele´ndez-Martı´nez, J.J., Domı´nguez-Rodrı´guez, A., Monteverde, F. et. al. (2002), “Characterization and high temperature mechanical properties of zirconium boride-based materials”, Journal of the European Ceramic Society, no. 22, pp. 2543–2549.
Ovid’ko, I.A., Sheynerrman, A.G., Aifantis E.C. (2011), “Mechanics of the crack growth processes in nanoceramics”, Materials Physics and Mechanics, 12, pp. 1-29. (In Russ.)
Wu, W-W., Wang, Zh., Kan, Y-M. (2009), “ZrB2-MoSi2 composites toughened by elongated ZrB2 grains via reactive hot pressing”, Scripta Mater, vol. 61, issue 3, pp. 316-319.
Guicciardi, S., Silvestroni, L., Nygren, M., Sciti, D. (2010), “Microstructure and toughening mechanisms in spark plasma-sintered of ZrB2 ceramics reinforced by SiC whiskers or SiC-chopped fibers”, Journal of the American Ceramic Society, 93, pp. 2384-2391.
Yang, F., Zhang, X., Han, J., Du, S. (2008), “Mechanical properties of short carbon fiber re-inforced ZrB2-SiC ceramic matrix composites”, Materials Letters, 62, pp. 2925-2927.
Pienti, L., Sciti, D., Silvestroni, L. and Guicciardi, S. (2013), “Effect of Milling on the Me-chanical Properties of Chopped SiC Fiber-Reinforced ZrB2”, Materials, no. 6, pp.1980-1993.
Stackpoole, M., Gasch, M., Olson, M., Hamby, I., Johnson, S. The United States of Ameri-ca as represented by the Administrator of National Aeronautics & Space Administration (NASA) (2013), In-situ formation of reinforcement phases in ultra high temperature ceramic composites, U.S., Pat. 8409491.
Yujin W., Lei Ch., Yu, Zh., Dechang, J., Harbin Institute of Technology (2011), Prepara-tion method of complex phase ceramic material containing zirconium boride, CN, Pat. 102173813 (A).
Xiao, K., Guo, Q., Liu, Zh. et. al. (2014), “Influence of fiber coating thickness on micro-structure and mechanical properties of carbon fiber-reinforced zirconium diboride based composite”, Ceramic International, 40, pp. 1539-1544.
Matrenin, S.V., Il’in, A.P., Tolbanova, L.O. et. al. (2010), “Activation of the sintering of oxide ceramics with the use of nanodisperse powders”, Izvestiia Tomskogo politehnicheskogo universi-teta, Himiia, vol. 317, no. 3, pp. 24-28. (In Russ.)
Stepanov, E.I., Grigoriev, M.V., Kirko, V.I. (2008), “Influence of Ultra Dispersive Al2O3 Additions on the Physical- Mechanical Properties of Corundum Ceramics”, Journal of Siberian Federal University. Engineering & Technologies, vol. 1, issue 2, pp. 162-167.
Ang, C., Seeber, A., Wang, K., and Cheng, Y-B. (2013), “Modification of ZrB2 powders by a sol-gel ZrC precursor – A new approach for ultra high temperature ceramic composites”, J. of Asian Ceramic Society, 1, pp. 77-85.
Ang, C., Williams, Т., Vowels, D., Wood, Ch. et al. (2014), “Influence of sol-gel derived ZrO2 and ZrC additions on microstructure and properties of ZrB2 composites”, J. Eur. Ceram. Soc., 34, no. 13, pp. 3139-3149.
Goto, T. (2013), “Applications of Spark Plasma Sintering”, 2nd International school-seminar “Perspective technology of materials consolidation with electromagnetic fields” 1st Russia-Japan SPS Workshop, Moscow, Russia, May 20-22.
Xinghong Zhang, Lin Xu, Shanyi Du, Chengyong Liu, et al. (2008), “Spark plasma sintering and hot pressing of ZrB2–SiCW ultra-high temperature ceramics”, Journal of Alloys and Compounds, 466, pp. 241–245.