SYNTHESIS OF REDOX-ACTIVE POLYMER BASED VERDASIL BIRADICAL
DOI:
https://doi.org/10.17072/2223-1838-2019-3-266-278Keywords:
verdazyl, stable radical, toluene diisocyanate, formazan, polyurethane, EPR spectroscopy, cyclic voltametryAbstract
A redox-active polymer based on a verdazyl biradical - 4,4'-bis(3-(4’-hydroxyphenyl)-5-phenylverdazyl-1)-1,1'-biphenyl and 2,4-toluene diisocyanate was obtained. Verdazyl radical, being a diatomic phenol, easily reacts with toluene diisocyanate to form polyurethane. The presence of urethane bonds in the polymer molecule was confirmed by IR, and the presence of radical centers by EPR spectroscopy. The cyclic voltammetry method showed the ability of a polymer to undergo reversible redox transitions.References
N.Kentaro, O. Kenichi, N. Hiroyuki. Organic Radical Battery Approaching Practical Use // Chem. Lett., 2011, Vol. 40, pp. 222227. doi:10.1246/cl.2011.222
Y. Liu, M.-A. Goulet, L. Tong, Y. Ji, L. Wu, R. G. Gordon, M. J. Aziz, Z. Yang, T. Xu. A Long-Lifetime All-Organic Aqueous Flow Battery Utilizing TMAP-TEMPO Radical // Chem. 2019. Vol. 5 (7), pp. 1861-1870. doi: 10.1016/j.chempr.2019.04.021.
H. Chen, G. Cong, Y.-Ch. Lu. Recent progress in organic redox flow batteries: Active materials, electrolytes and membranes // Journal of Energy Chemistry. 2018. Vol. 27 (5), pp. 1304-1325. Doi: 10.1016/j.jechem.2018.02.009.
P.-O. Schwartz, M. Pejic, M. Wachtler, P. Bäuerle. Synthesis and characterization of electroac-tive PEDOT-TEMPO polymers as potential cathode materials in rechargeable batteries // Syn-thetic Metals. 2018. Vol. 243, pp. 51-57. Doi:10.1016/j.synthmet.2018.04.005.
A. Gopinath, A. Sultan Nasar. Electroactive six arm star poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate): Synthesis and application as cathode material for rechargeable Li-ion batteries // Polymer. 2019. Vol. 178, № 121601. Doi:10.1016/j.polymer.2019.121601.
S.G. Reis, M.A. del Águila-Sánchez, G.P. Guedes, Y. Navarro, R.A. Allão Cassaro, G.B. Fer-reiraa, S. Calancea, F. López-Ortiz, M.G.F. Vaz. Novel P,P-diphenylphosphinic amide-TEMPO radicals family: Synthesis, crystal structures, spectroscopic characterization, magnetic properties and DFT calculations // Polyhedron. 2018. Vol. 144, pp. 166-175. Doi:10.1016/j.poly.2018.01.011.
Y. Liang, Y.Yao. Positioning Organic Electrode Materials in the Battery Landscape // Joule. 2018. Vol. 2 (9), Issue 9, pp. 1690-1706. Doi:10.1016/j.joule.2018.07.008.
Q. Huang, L. Cosimbescu, Ph. Koech, D. Choi, J. P. Lemmon. Composite organic radical–inorganic hybrid cathode for lithium-ion batteries // Journal of Power Sources. 2013. Vol. 233, pp. 69-73. Doi:10.1016/j.jpowsour.2013.01.076.
S. El Hankari, M. Bousmina, A. El Kadib. Biopolymer@Metal-Organic Framework Hybrid Mate-rials: A Critical Survey // Progress in Materials Science. 2019. № 100579. Doi:10.1016/j.pmatsci.2019.100579.
T. Gu, M. Zhou, B. Huang, Sh. Cao, J. Wang, Y. Tang, K. Wang, Sh. Cheng, K. Jiang. Ad-vanced Li-organic batteries with super-high capacity and long cycle life via multiple redox reac-tions // Chemical Engineering Journal. 2019. Vol.373, pp. 501-507. Doi:10.1016/j.cej.2019.05.062.
R. Kuhn, H. Trischmann. Über Verdazyle, eine neue Klasse cyclischer N-haltiger Radikale // Monatshefte für Chemie. 1964. Vol. 95 (2), pp 457-479. Doi:10.1007/BF00901311.
P.H.H. Fischer. LCAO-MO calculations on verdazyls // Tetrahedron. 1967. Vol. 23 (4), pp. 1939-1952. Doi:10.1016/S0040-4020(01)82597-7.
P. Hanson. Heteroaromatic Radicals, Part I: General Properties; Radicals with Group V Ring Heteroatoms // A.R. Katritzky, A.J. Boulton. Advances in Heterocyclic Chemistry. 1980. Vol. 25, pp. 205-301. Doi:10.1016/S0065-2725(08)60693-5.
B. D. Koivisto, R. G. Hicks. The magnetochemistry of verdazyl radical-based materials // Coor-dination Chemistry Reviews. 2005. Vol. 249 (23), pp. 2612-2630. Doi:10.1016/j.ccr.2005.03.012.
S.D.J. McKinnon, B.O. Patrick, A.B.P. Lever and R.G. Hicks. Verdazyl radicals as redox-active, non-innocent, ligands: contrasting electronic structures as a function of electron-poor and elec-tron-rich ruthenium bis(β-diketonate) co-ligands // Chem. Commun. 2010, Vol. 46, pp. 773-775. Doi:10.1039/B919920A.
J.B. Gilroy, S.D.J. McKinnon, B.D. Koivisto, R.G. Hicks. Electrochemical Studies of Verdazyl Radicals // Org. Lett. 2007, Vol. 9 (23), pp. 4837-4840. Doi:10.1021/ol702163a.
G.D. Charlton, S.M. Barbon, J.B. Gilroy, C.A. Dyker. A bipolar verdazyl radical for a symmetric all-organic redox flow-type battery // Journal of Energy Chemistry. 2019. Vol. 34, pp. 52-56. Doi:10.1016/j.jechem.2018.09.020.
Цебулаева Ю.В., Пряничникова М.К., Танасейчук Б.С. Синтез 1,5-дифенил-3-арилвердазилов // Изв. вузов. Химия и хим. технология. 2018. Т. 61, вып. 1, с. 23-29. Doi:10.6060/tcct.20186101.5528.