Водородаккумулирующие материалы
DOI:
https://doi.org/10.17072/2223-1838-2019-2-106-125Abstract
В работе определен основной спектр методов аккумулирования водорода, применяемых на сегодняшний день в водородной энергетике, а также рассмотрены материалы, используемые в данных методах. Установлены перспективные материалы для будущего водородной энергетики. Из всего разнообразия их выделены самые перспективные, такие как металлогидриды и катодные материалы. Но также было отмечено, что на сегодняшний день не существует оптимального и универсального метода хранения водорода, и их выбор обусловлен целями и возможностями отдельных сфер водородной энергетики.References
Felderhoff, M. (2007), “Hydrogen storage: the remaining scientific and technological challenges”, Phys. Chem. Chem. Phys., vol. 9, no. 21. pp. 2643–2653.
Selvam, P., Viswanathan, B., Swamy, C. S. and Srinivasan, V. (1986), “Magnesium and magnesium alloy hydrides”, Int. Journal of Hydrogen Energy, vol. 11, no. 3, pp. 169–192.
Sakintuna, В., Lamari-Darkrim, F. and Hirscher, M. (2007), “Metal hydride materials for solid hydrogen storage”, Int. Journal of Hydrogen Energy, vol. 32, no. 9, pp. 1121-1140.
Hofman, M.S., Wang, D.Z., Yang, Y. and Koel, B.E. (2018), “Interactions of incident H atoms with metal surfaces”, Surface Science Reports, doi: 10.1016/j.surfrep.2018.06.001.
Gavrilova, N.V., Shalimov. Yu.N. and Kharchenko, E.L. (2008), “Prospects for the use of hydrogen in the energy sector”, Elektrokhimiches kiyekompleksy i sistemy upravleniya, no. 1, pp. 60-65.
Hirscher, M. (ed.) (2010), Handbook of hydrogen storage, WILEY-VCH Verlag, Hoboken, USA.
Tsygankova, L.E., Gladysheva, I.E., Alekhina, O.V. and Zvereva, A.A. (2011), “Cathode release of hydrogen and its absorption by carbon nanotubes modifying compressed micrographite cathodes”, Vestnik Tambovskogo universiteta, vol. 16, no. 3, pp. 855-859.
Kustov, L.M., Tarasov, A.L., Sung, J. and Godovsky, D.Y. (2014), “Hydrogen storage materials”, Mendeleev Communications, vol. 24, no. 1, pp. 1-8.
Isaeva, V.I. and Kustov, L.M. (2006), “Organometallic carcasses - new materials for hydrogen storage”, Russkii Khimicheskii Zhurnal, vol. 50, no. 6, pp. 56-72.
Tarasov, B.P. and Lototsky, M.V. (2006), “Hydrogen energy: past, present, future views”, Russki i Khimicheskii Zhurnal, no. 6, pp. 5-18.
Spivak, L.V. (2011), “Vodorod v metallah” [Hydrogen in metals], Permskij gosudarstvennyj universitet, Perm, Russia.
Zeng, K., Klassen, T.,Oelerich, W. and Bormann, R. (1999), “Thermodynamics of the Ni–H system”, Alloys Comp., vol. 283. pp. 213-224.
Yartys, V.A. and Lototsky, M.V. (2004), Hydrogen materials science and chemistry of carbon nanomaterials. in Vezirogli, T.N., Zaginaichenko, S.Yu., Schur, D.V., Baranowski, B., Shpak, A.P. and Shorokhod, V.V. (ed), Kluwer Academic Publishers, Dordrecht, Netherlands.
Rosi, N.I., Ecker, J., Eddaoudi, M., Vodak, D.T., Kim, J., O’Keeffe, M. and Yaghi, O.M. (2003), “Hydrogen storage in microporous metal-organic frameworks”, Science, vol. 300, pp. 1127 -1129.
Gamburg, D. Yu, Semenov, V. P., Dubovkin, N.F. and Smirnova, L.N. (1989), Vodorod. Svojstva, poluchenie, hranenie, transportirovanie, primenenie. [Hydrogen. Properties, receipt, storage, transportation, application.], Himiya, Moskva, Russia.
Ye, Y., Ahn, C.C. and Witham, C. (1999), “Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes”, Applied Physics Letters, vol. 74(16), pp. 2307-2309.
Liu, C. and Fan, Y.Y. (1999), “Hydrogen storage in single-walled carbon nanotubes at room temperature”, Science, vol. 286(5442), pp. 1127-1129.
Baughman, R.H., Zakhidov, A.A. and de Heer, W.A. (2002), “Carbon nanotubes - the route toward applications”, Science, vol. 297(5582), pp. 787-792.
Popov, V.N. (2004), “Carbon nanotubes: properties and application”, Materials Science & Engineering R: Reports, vol. 43(3), pp. 61-102.
Arico, A.S. and Bruce, P. (2005), “Nanostructured materials for advanced energy conversion and storage devices”, Nature Mat., vol. 4(5), pp. 366-377.
Zhao, J.J., Buldum, A., Han, J. and Lu, J.P. (2002), “Gas molecule adsorption in carbon nanotubes and nanotube bundles”, Nanotechnology, vol. 13(2), pp. 195-200.
Dillon, A.C., Jones, K.M. and Bekkedahl, T.A. (1997), “Storage of hydrogen in single-walled carbon nanotubes”, Nature, vol. 386(6623), pp. 377-379.
Iijima, S. (1991), “Helical microtubules of graphitic carbon”, Nature, vol. 354, pp. 56.
Bethune, D.S., Kiang, C.H., deVries, M.S., Gorman, G., Savoy, R., Vazquez, J. and Beyers, R. (1993), “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls”, Nature, vol. 363, pp. 605.
Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomane´k, D., Fischer, J.E. and Smalley, R.E.(1996), “Crystalline ropes of metallic carbon nanotubes”, Science, vol. 273, pp. 483.
Li, W.Z., Xie, S.S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y., Zhao, R.A. and Wang, G. (1996), “Large-scale synthesis of aligned carbon nanotubes”, Science, vol. 274, pp. 1701.
Mustonen, K., Laiho, P. and Kaskela, A. (2015),“Gas phase synthesis of non-bundled, small diameter single-walled carbon nanotubes with near-armchair chiralities”, Applied Physics Letters, vol. 107(1), no. 013106.
Kim, Y., Nishikawa, E. and Watanabe, Y. (2018), “Carbon nanotube synthesis and dispersion using arc discharge in foam made with a surfactant”, e-Journal of Surface Science and Nanotechnology, vol. 16, pp. 382-386.
Fang, X.Q., Shashurin, A., Teel, G. and Keidar, M. (2016), “Determining synthesis region of the single wall carbon nanotubes in arc plasma volume”, Carbon, vol. 107, pp. 273-280.
Al-Zanganawee, J., Katona, A., Mois, C., Bojin, D. and Enachescu, M. (2015), “Krypton gas for high quality single wall carbon nanotubes synthesis by KrF excimer laser ablation”, Journal of Nanomaterials, no. 909072.
Troshenkin, V.B. (2005), “Thermodynamics of the process of hydrogen production in the interaction of aluminum, nitrogen and iron with water”, Vestnik NTU, vol. 6, pp. 181-189.
Tarasov, B.P., Lototskiy, M.V. and Yartys, V.A. (2006), “The problem of hydrogen storage and the prospects for the use of hydrides for hydrogen storage”, Rossiyskiy khimicheskiy zhurnal, vol. 50, no. 6, pp. 34-48.
Schuth, F., Bogdanovica, B. and Felderhoffa, M. (2004), “Light metal hydrides and complex hydrides for hydrogen storage”, Chem. Commun., pp. 2249-2258.
Zuttel, A. (2003), “Materials for hydrogen storage”, Materials Today, pp. 24-33.
Rusman, N. A. A. and Dahari, M. (2016), “A review on the current progress of metal hydrides material for solid-state hydrogen storage applications”, Int. Journal of Hydrogen Energy, no. 41(28), pp. 12108-12126.
Niaz, S., Manzoor, T. and Pandith, A.H. (2015), “Hydrogen storage: Materials, methods and perspectives”, Renewable & Sustainable Energy Reviews, no. 50, pp. 457-469.
Zvyagintseva, A.V. and Artemyeva, A.O. (2017), “Modern hydrogen storage based on hybrid functional materials”, Vestnik voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, vol. 13, no. 5, pp. 133-138.
Gvozdkov, I.A., Belyayev, V.A., Potapov, S.N., Verbetskiy, V.N., Mitrokhin, S.V. and Tepanov, A.A. (2018), “Development of a chemical source of hydrogen based on hydrides of magnesium alloys”, Materialovedeniye, no. 11, pp. 27-31.
Callini, E., Atakli, Z.O.K. and Hauback, B.C. (2016), “Complex and liquid hydrides for energy storage”, Applied Physics A: Materials Science & Processing, vol .122(4), no. 353.
Li, H.W. and Yan, Y.G. (2011), “Recent Progress in Metal Borohydrides for Hydrogen Storage”, Energies, vol. 4(1), pp. 185-214.
Ley, M.B. and Jepsen, L.H. (2014), “Complex hydrides for hydrogen storage - new perspectives”, Materials Today, vol. 17(3), pp. 122-128.
Steinfeld, A. (2002), “Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions”, Int. Journal of Hydrogen Energy, vol. 27(6), pp. 611-619.
Sandrock, G. (1994), “Hydrogen Energy System. Production and Utilization of Hydrogen and Future aspects”, Kluwer Academic Publishers, vol. 295, pp. 135-166.
Sandrock, G.J. (1999), “A panoramic overview of hydrogen storage alloys from a gas reaction point of view”, Journal of Alloys and Compounds, vol. 293-295, pp. 877-888.
Tarasov, B.P. (2017), “Physical chemistry of hydrogen-accumulating materials”, Vodorodnye ehnergeticheskie tekhnologii, vol. 1, pp. 78-100.
Klyamkin, S.N. (2006), “Magnesium-based metal hydride compositions as materials for hydrogen storage”, Rossiyskiy khimicheskiy zhurnal, vol. L, no. 6, pp. 49-56.
Stampfer, J.F., Holley, C.E. and Suttle, J. F. (1960), “The Magnesium-Hydrogen System”, Journal of the American Chemical Society, vol. 82, no. 7, pp. 3504-3508.
Lukashev, R.V., Klyamkin S.N. and Tarasov, B.P. (2006), “Preparation and properties of hydrogen-accumulating composites in the system MgH2-C”, Neorganicheskie materialy, vol. 42, no. 7, pp. 803-810.
Popovic, Z.D. and Piercy G.R. (1975), “Measurement of the solubility of hydrogen in solid magnesium”, Met. Trans., vol. 6A, no. 10, pp. 1915-1917.
Boriz, M., Bertheville, B., Yvon, K. and Bottger, G. (1999), “Structure of the high-pressure phase γ-MgH2 by neutron powder diffraction”, Journal of Alloys and Compounds, vol. 287, pp. L4-L6.
Kuzubov, A.A., Eliseeva, N. S., Krasnov, P. O., Kuklin, A. V. and Serzhantova, M. V. (2013), “Modeling of the process of hydrogen diffusion by the vacancy mechanism in the intermetallic hydride Mg2NiH4”, Sibirskij zhurnal nauk i itekhnologij, vol. 3, no. 49, pp. 199-203.
Nachev, S., de Rango, P., Fruchart, D., Skryabina, N. and Marty, Ph. (2013), “Correlation between microstructural and mechanical behavior of nanostructured MgH2 upon hydrogen cycling”, Journal of Alloys and Compounds, vol. 580, pp. S183-S186.
de Rango, P., Chaise, A., Charbonnier, J., Fruchart, D., Jehan, M., Marty, Ph., Miraglia, S., Rivoirard, S. and Skryabina, N. (2007), “Nanostructured magnesium hydride for pilot tank development”, Journal of Alloys and Compounds, vol. 446, pp. 52-57.
Checchetto, R., Bazzanella, N., Miotello, A. and Mengucci, P. (2007), “Catalytic properties on the hydrogen desorption process of metallic additives dispersed in the MgH2 matrix”, Journal of Alloys and Compounds, vol. 446, pp. 58-62.
Tan, X., Wang, L., Holt, C., Zahiri, B., Eikerling, M. and Mitlin, D. (2012), “Body centered cubic magnesium niobium hydride with facile room temperature absorption and four weight percent reversible capacity”, Phys. Chem. Chem. Phys., vol. 14, no. 31, pp. 10904-10909.
Huot, J., Pelletier, J.F., Lurio, L.B., Sutton, M. and Schluz, R. (2003), “Investigation of dehydrogenation mechanism of MgH2–Nb nanocomposites”, Journal of Alloys and Compounds, vol. 348, no. 1-2., pp. 319-324.
Akiba, E. and Iba, H. (1998), “Hydrogen absorption by Laves phase related BCC solid solution”, Intermetallics, vol. 6, no. 6, pp. 461-470.
Kamegava, A., Tamura, T., Takamura, H. and Okada, M. (2003), “Protium absorption–desorption properties of Ti–Cr–Mo BCC solid solution alloys”, Journal of Alloys and Compounds, vol. 356-357, p. 447-451.
Itoh, H., Arashima, H., Kubo, K. and Kabutomori, T. (2002), “The influence of microstructure on hydrogen absorption properties of Ti-Cr-V alloys”, Journal of Alloys and Compound, vol. 330–332, pp. 287-29.
Kabutomori, T., Takeda, H., Wakisaka, Y. and Ohnishi, K. (1995), “Hydrogen absorption properties of Ti–Cr–A (A = V, Mo or other transition metal) BCC solid solution alloys”, Journal of Alloys and Compounds, vol. 231, pp. 528–532.
Skryabina, N.E., Fruchart, D., Miraglia, S., de Rango, P. and Shelyapina, M.G. (2011), “Phase transformations in Ti-V-Cr-H composition”, Solid State Phenomena, vol. 170, pp. 302-306.
Har'kov, B.B., Shelyapina, M.G., Skryabina, N.E., Fruchart, D. and Miraglia, S. (2008), “Effect of catalytic additives Zr7Ni10 and Hf7Ni10 on th structure and mobility of hydrogen in TiV0.8Cr1.2”, Magnitnyj rezonans i ego prilozheniya [Magnetic resonance and its applications], 5-aya zimnyaya molodyezhnaya shkola–konferenciya [5th winter youth conference school], St. Petersburg, Russia, 1-5 December 2008, pp. 90-92.
Wang, J.H., Cui, W. and Liu, Q. (2016), “Recent Progress in Cobalt-Based Heterogeneous Catalysts for Electrochemical Water Splitting”, Adv. Mat., vol. 28(2), pp. 215-230.
Gao, M.R. and Liang, J.X. (2015), “An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation”, Nature Communications, vol. 6, pp. 59-82.
Reshetnikov, S.M., Kharanzhevskiy, E.V. and dr. (2013), “Nanoscale composites obtained by laser sintering iron-nickel-carbon powders as effective cathodes for electrochemical hydrogen production", Khimicheskaya fizika i mezoskopiya, vol. 14, no. 4, pp. 617-625.
Kuznetsov, V.V., Golyanin, K.E. and dr. (2013), “Electrodeposition of Fe-Mo alloy and the prospects for its use as a cathode material in the electrochemical production of hydrogen”, Galvanotekhnika i obrabotka poverkhnosti, vol. 21, no. 4, pp. 18-23.
Vvedenskij, A.V., Gutorov, I. A. and Morozova, N.B. (2008), “Effects of gas-phase nucleation in the kinetics of hydrogen evolution on transition metals”, Elektrohimicheskaya ehnergetika, vol. 8, no. 4, pp. 227-236.
Gabov, A.L., Belosludtsev, I.S., Medvedeva, N.A., Skryabina, N.E. and Frushar D. (2014), “The effect of the microstructure of magnesium-based alloys on cathodic hydrogen evolution”, Chimica Techno Acta, vol.1, no. 2, pp. 61-66.
Kichigin, V.I., Shein, A.B. and Shamsutdinov, A.Sh. (2016), “Kinetics of cathodic evolution of hydrogen on iron monosilicide in acidic and alkaline media”, Kondensirovannyye sredy i mezhfaznyye granitsy, vol. 18, no. 3, pр. 326-337.
Kichigin, V.I., Shein, A.B. and Shamsutdinov, A.Sh. (2017), “Kinetics of the reaction of hydrogen evolution on nickel monosilicide in acidic and alkaline solutions”, Kondensirovannyye sredy i mezhfaznyye granitsy, vol. 19, no. 2, pр. 222-231.
Kichigin,V.I. and Shein, A.B. (2015), “Kinetics and mechanism of hydrogen evolution reaction on cobalt silicides in alkaline solutions”, Electrochimica Acta, vol. 164, pp. 260-266.
Kuzminykh, M.M., Kostrov, A.I., Panteleyeva, V.V. and Shein, A.B. (2015), “Electrochemical activity of iron digide in the reaction of hydrogen evolution. I. Sour environment”, Kondensirovannyye sredy i mezhfaznyye granitsy, vol. 17, no. 3, pp. 341-348.
Kuzminykh, M.M., Kostrov, A.I., Panteleyeva, V.V. and Shein, A.B. (2015), “Electrochemical activity of iron digide in the reaction of hydrogen evolution. II. Alkaline environment”, Kondensirovannyye sredy i mezhfaznyye granitsy, vol. 17, no. 3, pp. 349-357.
Subakova, I.R., Petukhov, I.V. and Medvedeva, N.A. (2015), “Obtaining of Ni-P-TiO2 Composite Coatings with TiO2 sol and Surfactants and Their Properties”, Mater. Manuf. Process., vol. 30, no. 6, pp. 766-770.
Tiunov, I.A., Medvedeva, N.A. and Petukhov, I.V. (2013), “Production, properties of Ni-P-Ni5LaxCe(1-X) coatings and their electrochemical activity in the reaction of hydrogen evolution”, Vestnik permskogo universiteta, vol. 3, no. 11, pp. 53-60.
Bowman, R.C. (2003), “Development of metal hydride beds for sorption cryocoolers in space applications”, Journal of Alloys and Compounds, vol. 356-357, pp. 789-793.