Biodegradation of linear polyacrylamides by bacteria containing amidase

Main Article Content

Elena M. Protasova

Abstract

The ability of Rhodococcus erythropolis IL BIO and Alcaligenes faecalis 2 bacterial strains with amidase activity to use linear polyacrylamides (PAAs) Praestol 650 BC, 2540 and 2300 D as a source of carbon or nitrogen nutrition was studied. It was determined that bacterial strains used these PAAs at a concentration of 0.1, 0.05 and 0.01% as a nitrogen source for biomass growth. The greatest bacterial growth was observed on the medium with PAA Praestol 2300 D at a concentration of 0.1%. It should be noted that not in all cases did the growth of amidase-containing bacteria correlate with a decrease in polymer viscosity. No growth of A. faecalis 2 was observed on a medium with anionic polymer at a concentration of 0.1% as the only growth substrate and at a concentration of 0.01% as carbon nutrition. Nonionic and cationic PAAs were subjected to more effective microbial degradation than anionic.

Article Details

How to Cite
Protasova Е. М. (2025). Biodegradation of linear polyacrylamides by bacteria containing amidase. Bulletin of Perm University. Biology, (1), 43–48. https://doi.org/10.17072/1994-9952-2025-1-43-48
Section
Микробиология
Author Biography

Elena M. Protasova, Institute of Ecology and Genetics of Microorganisms, PFRC Ural Branch of the RAS, Perm, Russia

engineer of the laboratory of molecular biotechnology, graduate of postgraduate studies in the field of training 06.06.01 Biological sciences

References

Демаков В.А. и др. Бактерии активного ила биологических очистных сооружений, трансформиру-ющие цианопиридины и амиды пиридинкарбоновых кислот // Микробиология. 2015. Т. 84, № 3. С. 369–378. DOI: 10.7868/S0026365615030039 EDN: TQQVBB

Максимова Ю.Г., Горшкова А.А., Демаков В.А. Биодеградация полиакриламидов почвенной мик-рофлорой и штаммами амидазосодержащих бактерий // Вестник Пермского университета. Сер. Биоло-гия. 2017. Вып. 2. С. 200–204. EDN: ZCMLLX

Максимова Ю.Г. и др. Влияние немодифицированных многостенных углеродных нанотрубок на формирование и разрушение бактериальных биопленок // Микробиология. 2022. Т. 91, № 4. С. 507–516. DOI: 10.31857/S0026365621100694 EDN: PXWGDO

Akbar M., Khan M.F.S., Abid M. Novel insight into the degradation of polyacrylamide by thermophilic anaerobic digestion // Biochem. Engin. J. 2022. Vol. 189. Art. 108716. DOI: 10.1016/j.bej.2022.108716 EDN: MADWMY

Bedade D.K., Singhal R.S. Biodegradation of acrylamide by a novel isolate, Cupriavidus oxalaticus IC-TDB921: Identification and characterization of the acrylamidase produced // Bioresource Technol. 2018. Vol. 261. P. 122–132. DOI: 10.1016/j.biortech.2018.04.012 EDN: VFABUZ

Caulfield M.J. et al. Degradation on polyacrylamides. Part I. Linear polyacrylamide // Polymer. 2003. Vol. 44, № 5. P. 1331–1337. DOI: 10.1016/S0032-3861(03)00003-X EDN: BDQUJZ

Duda-Chodak A. et al. A review of the interactions between acrylamide, microorganisms and food com-ponents // Food Funct. 2016. Vol. 7, № 3. P. 1282–1295. DOI: 10.1039/c5fo01294e

Gaytán I., Burelo M., Loza-Tavera H. Current status on the biodegradability of acrylic polymers: micro-organisms, enzymes and metabolic pathways involved // Appl. Microbiol. Biotechnol. 2021. Vol. 105. P. 991–1006. DOI: 10.1007/s00253-020-11073-1 EDN: ZDTKJJ

Gilbert W.J.R. et al. Enzymatic degradation of polyacrylamide in aqueous solution with peroxidase and H2O2 // J. Appl. Polym. Sci. 2017. Vol. 134, № 10. Art. 44560. DOI: 10.1002/app.44560 EDN: YWTRCP

Guezennec A.G. et al. Transfer and degradation of polyacrylamide based flocculants in hydrosystems: a review components // Environ. Sci. Pollut. Res. Int. 2015. Vol. 22. P. 6390–6406. DOI: 10.1007/s11356-014-3556-6 EDN: VEXGHX

Jiang C. et al. Neighboring group effect on the thermal degradation of polyacrylamide and its deriva-tives // J. of Polymer Engineering. 2019. Vol. 39, № 3. P. 239–247. DOI: 10.1515/polyeng-2018-0274 EDN: NNAESR

Joshi S.J., Abed R.M.M. Biodegradation of polyacrylamide and its derivatives // Environ. Process. 2017. Vol. 4. P. 463–476. DOI: 10.1007/s40710-017-0224-0 EDN: YENXQQ

Nyyssölä A., Ahlgren J. Microbial degradation of polyacrylamide and the deamination product polyacry-late // Inter. Biodeterioration and Biodegradation. 2019. Vol. 139. P. 24–33. DOI: 10.1016/j.ibiod.2019.02.005

Uranta K.G. et al. Application of polymer integration technique for enhancing polyacrylamide (PAM) performance in high temperature and high salinity reservoirs // Heliyon. 2019. Vol. 5, № 7. Art. e02113. DOI: 10.1016/j.heliyon.2019.e02113

Wei H. et al. Coagulation /flocculation in dewatering of sludge: a review // Water Research. 2018. Vol. 143. P. 608–631. DOI: 10.1016/j.watres.2018.07.029 EDN: YKRFRJ