The antimicrobial activity of ethanolic extracts derived from the fruits of wild and cultivated carrots against clinical isolates of Gram-positive and Gram-negative bacteria

Main Article Content

Evgeniya V. Utyaganova
Ekaterina A. Yurtaeva
Svetlana S. Sigareva
Elena O. Sergeeva
Irina S. Stepanenko
Anna V. Lutsenko

Abstract

In this study, we evaluated the in vitro antimicrobial activity of ethanolic extracts from the fruits of Daucus carota subsp. carota (wild carrot) and Daucus carota subsp. sativus (cultivated carrot) against five clinically significant bacterial strains: Acinetobacter sp. 12/19, Escherichia coli 83, Streptococcus pneumoniae UEV, Staphylococcus aureus MP1989, and Enterococcus faecalis 26. The antimicrobial activity was determined using the serial dilution method, followed by the establishment of the minimum inhibitory concentration (MIC₅₀) that caused 50% inhibition of the growth of the tested cultures. The results demonstrated a pronounced antimicrobial activity of the tested extracts against all tested strains. The ethanolic extract from D. carota subsp. carota fruits showed higher antimicrobial activity compared to the extract from D. carota subsp. sativus. Specifically, against Acinetobacter sp. 12/19, the extract from wild carrot fruits exhibited a bacteriostatic effect at concentrations starting from 2.0 µg/mL. Against E. coli 83, both extracts demonstrated comparable antibacterial activity, with an MIC₅₀ at the level of 2.0 µg/mL (growth inhibition was 59% relative to the control). However, the minimal bactericidal concentration (MBC) for both extracts was determined as 135 µg/mL, indicating a less pronounced bactericidal effect compared to ceftriaxone, which was used as a reference drug. Against S. pneumoniae UEV, both extracts showed comparable levels of growth suppression across the entire range of tested concentrations, with the percentage of inhibition ranging from 86% (at low concentration) to 93% (at high concentration). Against S. aureus MP1989, both extracts demonstrated bacteriostatic activity in the concentration range of 2.0-135 µg/mL, with a percentage of inhibition from 32.8% to 95.7% for the D. carota subsp. carota extract and from 49.9% to 92.8% for the D. carota subsp. sativus extract. Against E. faecalis 26, the tested extracts were inferior in activity to ceftriaxone, but exhibited a pronounced bacteriostatic effect, with a percentage of inhibition from 69.0% to 96% in the concentration range of 8.0-67.0 µg/mL. The obtained results indicate the promise of further study of the phytochemical composition and antimicrobial potential of Daucus carota fruit extracts for the development of new antimicrobial agents.

Article Details

How to Cite
Utyaganova Е. В., Yurtaeva Е. А., Sigareva С. С., Sergeeva Е. О., Stepanenko И. С., & Lutsenko А. В. (2025). The antimicrobial activity of ethanolic extracts derived from the fruits of wild and cultivated carrots against clinical isolates of Gram-positive and Gram-negative bacteria. Bulletin of Perm University. Biology, (1), 49–58. https://doi.org/10.17072/1994-9952-2025-1-49-58
Section
Микробиология
Author Biographies

Evgeniya V. Utyaganova, Pyatigorsk Medical and Pharmaceutical Institute – Branch of Volgograd State Medical University, Ministry of Health of Russia, Pyatigorsk, Russia

Candidate of Pharmaceutical Sciences, Associate Professor, Department of Microbiology and Immunology

Ekaterina A. Yurtaeva, Pyatigorsk Medical and Pharmaceutical Institute – Branch of Volgograd State Medical University, Ministry of Health of Russia, Pyatigorsk, Russia

Candidate of Pharmaceutical Sciences, Associate Professor, Department of Microbiology and Immunology

Svetlana S. Sigareva, Pyatigorsk Medical and Pharmaceutical Institute – Branch of Volgograd State Medical University, Ministry of Health of Russia, Pyatigorsk, Russia

Senior Lecturer, Department of Biological Chemistry

Elena O. Sergeeva, Pyatigorsk Medical and Pharmaceutical Institute – Branch of Volgograd State Medical University, Ministry of Health of Russia, Pyatigorsk, Russia

Candidate of Pharmaceutical Sciences, Associate Professor, Head of the Department of Microbiology and Immunology

Irina S. Stepanenko, Volgograd State Medical University, Ministry of Health of Russia, Volgograd, Russia

Doctor of Medical Sciences, Associate Professor, Head of the Department of Microbiology, Chief Specialist of the Ministry of Health of the Russian Federation in Medical Microbiology in the Southern Federal District

Anna V. Lutsenko, Astrakhan State Medical University, Ministry of Health of Russia, Astrakhan, Russia

Candidate of Biological Sciences, Associate Professor, Department of Clinical Immunology with Postgraduate Education Course

References

Виноградова К.А. и др. Устойчивость микроорганизмов к антибиотикам: резистома, её объём, раз-нообразие и развитие // Антибиотики и химиотерапия. 2013. Т. 58, № 5–6. С. 38–48. EDN: RARWVF

Землянко О.М., Рогоза Т.М., Журавлева Г.А. Механизмы множественной устойчивости бактерий к антибиотикам // Экологическая генетика. 2018. Т. 16, № 3. С. 4–17.

Определение чувствительности микроорганизмов к антимикробным препаратам: клинические ре-комендации. Смоленск, 2018. 206 с.

Орловская Т.В. Фармакогностическое исследование некоторых культивируемых растений с целью расширения их использования в фармации: дис. … д-ра фарм. наук. М., 2011. 421 с.

Савченко К.Ю. Антибиотикорезистентность: факторы, механизмы и способы борьбы с явлением // Молодой ученый. 2020. № 22(312). С. 431–433. URL: https://moluch.ru/archive/312/70995/ (дата обраще-ния: 16.10.2024).

Breitmaier E. Terpenes: flavors, fragrances, pharmaca, pheromones. Weinheim: Wiley-VCH, 2006. 214 p.

Cowan M.M. Plant products as antimicrobial agents // Clinical microbiology reviews. 1999. Vol. 12(4), Р. 564–582. DOI: 10.1128/CMR.12.4.564

European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version. 2019. [05.06.2024]

European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version. 2021. [05.06.2024]

Harvey A.L. Natural products in drug discovery // Drug discovery today, 2008. Vol. 13(19-20), Р. 894–901. DOI: 10.1016/j.drudis.2008.07.004

Hiltunen T., Virta M., Laine A.L. Antibiotic resistance in the wild: an eco-evolutionary perspective // Philos. Trans. R. Soc. Lond. B: Biol. Sci. 2017. Vol. 372(1712). Art. 20160039. DOI: 10.1098/rstb.2016.0039.

Jia Z., Tang M., Wu J. The pharmacology and mechanism of action of gallic acid: Its anticancer, anti-inflammatory, antioxidant, and other activities beneficial to humans // Food and Function. 2014. Vol. 5(4). Р. 609–617. DOI: 10.1039/c3fo60655k.

Karkman A. et al. Antibiotic-Resistance Genes in Waste Water // Trends in microbiology. 2018. Vol. 26(3). P. 220–228. DOI: 10.1016/j.tim.2017.09.005.

Martinez J.L. General principles of antibiotic resistance in bacteria // Drug Discovery Today: Technolo-gies. 2014. Iss. 11. P. 33–39. DOI: 10.1016/j.ddtec.2014.02.001.

Newman D.J., Cragg G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019 // Journal of natural products. 2020. Vol. 83(3). Р. 770–803. DOI: 10.1021/acs.jnatprod.9b01285. EDN: XFOIKF

Rokbeni N. et al. Variation of the chemical composition and antimicrobial activity of the essential oils of natural populations of Tunisian Daucus carota L. (Apiaceae) // Chem. Biodivers. 2013. Vol. 10(12). P. 2278–2290. DOI: 10.1002/cbdv.201300137. EDN: YECIKV

Wagner H., Ulrich-Merzenich G. Synergy research: approaching a new generation of phytopharmaceuti-cals // Phytomedicine, 2009. Vol. 16(2–3). Р. 97–110. DOI: 10.1016/j.phymed.2008.12.018.

Wang L., Hu C., Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future // Int. J. Nanomedicine. 2017. Vol. 12. P. 1227–1249. DOI: 10.2147/IJN. S121956.

World Health Organization. (2017). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. World Health Organization. URL: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (дата обращения: 16.10.2024).

World Health Organization. (2019). Устойчивость к противомикробным препаратам. URL: https://www.who.int/ru/news-room/fact-sheets/detail/antimicrobial-resistance (дата обращения: 16.10.2024).

World Health Organization. (2021). Antimicrobial resistance. URL: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (дата обращения: 16.10.2024).

Yang K. et al. Synergistic antibacterial activity of gallic acid and cefotaxime against methicillin-resistant Staphylococcus aureus // The Korean Journal of Physiology & Pharmacology, 2010. Vol. 14(5). Р. 283–288. DOI: 10.4196/kjpp.2010.14.5.283.