Modeling of the protein structure of the α-subunit of biphenyl 2,3- dioxygenase (BphA1) of the R. wratislaviensis strain CH628

Main Article Content

Tatyana D. Kir’yanova

Abstract

Three-dimensional modeling of the α-subunit of biphenyl dioxygenase (BphA1) from the Rhodococcus wratislaviensis strain CH628 was performed using MODELLER, AlphaFold, and trRosetta software. The nucleotide sequence of the bphA gene was determined through an analysis of the whole-genome sequence of the strain in the RAST system. Phylogenetic analysis of bphACH628 revealed a high degree of similarity with the α-subunit of naphthalene dioxygenase (narA). To assess the quality of the generated models, ERRAT, VERIFY3D, and PROCHECK programs were employed. The BphA1CH628 model constructed with MODELLER demonstrated the highest structural accuracy, while the BphA1CH628 model from AlphaFold provided a better prediction of the enzyme's active site. Analysis of the active site indicated the conservation of key amino acids involved in catalysis, which supports the functional similarity to naphthalene dioxygenase. These findings open up new avenues for further investigation of BphA1 in the context of its application in the bioremediation.

Article Details

How to Cite
Kir’yanova Т. Д. (2025). Modeling of the protein structure of the α-subunit of biphenyl 2,3- dioxygenase (BphA1) of the R. wratislaviensis strain CH628. Bulletin of Perm University. Biology, (1), 32–42. https://doi.org/10.17072/1994-9952-2025-1-32-42
Section
Микробиология
Author Biography

Tatyana D. Kir’yanova, Institute of Ecology and Genetics of Microorganisms, PFRC Ural Branch of the RAS, Perm, Russia

engineer

References

Ananina L.N. et al. Naphthalene-degrading bacteria of the genus Rhodococcus from the Verkhnekamsk salt mining region of Russia // Antonie van Leeuwenhoek. 2011. Vol. 100. Р. 309–316. doi: 10.1007/s10482-011-9580-3. EDN: OHZMXD

Anokhina T.O. et al. Alternative naphthalene metabolic pathway includes formation of ortho-phthalic ac-id and cinnamic acid derivatives in the Rhodococcus opacus strain 3D // Biochemistry (Moscow). 2020. Vol. 85. Р. 355–368. doi: 10.1134/S0006297920030116. EDN: MHPAVJ

Baratto M.C. et al. Spectroscopic characterisation of the naphthalene dioxygenase from Rhodococcus sp. strain NCIMB12038 // International Journal of Molecular Sciences. 2019. Vol. 20, № 14. Art. 3402. doi: 10.3390/ijms20143402.

Castro A.R. et al. Rhodococcus opacus B4: a promising bacterium for production of biofuels and bi-obased chemicals // AMB Express. 2016. Vol. 6. P. 1−11. doi: 10.1186/s13568-016-0207-y. EDN: GZKDLZ

Colbert C.L. et al. Structural characterization of Pandoraea pnomenusa B-356 biphenyl dioxygenase re-veals features of potent polychlorinated biphenyl-degrading enzymes // PLoS One. 2013 Vol. 8, № 1. Art. e52550. doi: 10.1371/journal.pone.0052550.

Colovos C, Yeates T.O. Verification of protein structures: patterns of nonbonded atomic interactions // Protein Science. 1993. Vol. 2, № 9. Р. 1511–1519. doi: 10.1002/pro.5560020916.

Dhindwal S. et al. Structural basis of the enhanced pollutant-degrading capabilities of an engineered bi-phenyl dioxygenase // Journal of Bacteriology. 2016. Vol. 198, № 10. Р. 1499–1512. doi: 10.1128/jb.00952-15.

Egorova D.O. et al. Bioremediation of hexachlorocyclohexane-contaminated soil by the new Rhodococ-cus wratislaviensis strain Ch628 // Water Air Soil Pollution. 2017. Vol. 228. Р. 183–199. doi: 10.1007/s11270-017-3344-2. EDN: YVIWTP

Egorova, D.O. et al. Biodegradability of hydroxylated derivatives of commercial polychlorobiphenyls mixtures by Rhodococcus-strains // Journal of Hazardous Materials. 2020. Vol. 400. Art. 123328. doi: 10.1016/j.jhazmat.2020.123328. EDN: YAMJTU

Furusawa Y. et al. Crystal Structure of the Terminal Oxygenase Component of Biphenyl Dioxygenase Derived from Rhodococcus sp. Strain RHA1 // Journal of Molecular Biology. 2004. Vol. 342, № 3. Р. 1041–1052. doi: 10.1016/j.jmb.2004.07.062. EDN: KFOYKL

Gorbunova T.I. et al. Degradability of commercial mixtures of polychlorobiphenyls by three Rhodococ-cus strains // Archives of Microbiology. 2022. Vol. 204. Art. 534. doi: 10.1007/s00203-022-03131-1.

Gorbunova, T.I. et al. Biodegradation of trichlorobiphenyls and their hydroxylated derivatives by Rho-dococcus strains // Journal of Hazardous Materials. 2021. Vol. 409. Art. 124471. doi: 10.1016/j.jhazmat.2020.124471. EDN: QHUUIH

Jones D.T. et al. MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins // Bioinformatics. 2015. Vol. 31, № 7. Р. 999–1006. doi: 10.1093/bioinformatics/btu791.

Kuhlman B., Bradley P. Advances in protein structure prediction and design // Nature Reviews Molecular Cell Biology. 2019. Vol. 20, № 11. Р. 681–697. doi: 10.1038/s41580-019-0163-x. EDN: IJAOHN

Lüthy R., Bowie J.U. Eisenberg D. Assessment of protein models with three-dimensional profiles // Na-ture. 1992. Vol. 356, № 6364. Р. 83–85. doi: 10.1038/356083a0.

Na K.S. et al. Isolation and characterization of benzene-tolerant Rhodococcus opacus strains. // Journal of Bioscience and Bioengineering. 2005. Vol. 99, № 4. Р. 378–382. doi: 10.1263/jbb.99.378.

Tian W.et al. CASTp 3.0: computed atlas of surface topography of proteins // Nucleic Acids Research. 2018. Vol. 4, № W1. Р. W363–W367. doi: 10.1093/nar/gky473.

Wang S. et al. Accurate de novo prediction of protein contact map by ultra-deep learning model // PLoS Computational Biology. 2017. Vol. 13, № 1. Art. e1005324. doi: 10.1371/journal.pcbi.1005324.

Wang Y et al. The engineered biphenyl dioxygenases enhanced the metabolism of dibenzofuran // Inter-national Biodeterioration and Biodegradation. 2021. Vol. 161. Art. 105228. doi: 10.1016/j.ibiod.2021.105228. EDN: BVRXVY

Zhu L. et al. Degradation mechanism of biphenyl and 4,4’-dichlorobiphenyl cis-dihydroxylation by non-heme 2,3 dioxygenases BphA: A QM/MM approach // Chemosphere. 2020. Vol. 247. Art. 125844. doi: 10.1016/j.chemosphere.2020.125844. EDN: UMRTTC