Plants of the herbaceous-shrub layer in Specially Protected Natural Area the Osinskaya lesnaya dacha as a source of reactive volatile organic compounds
Main Article Content
Abstract
Article Details
References
Андреев Д.Н. Экогеохимическая диагностика антропогенной трансформации особо охраняемых природных территорий: дис. … канд. геогр. наук. Пермь, 2012. 164 с.
Белан Б.Д. Проблема тропосферного озона и некоторые результаты его измерений // Оптика атмо-сферы и океана. 1996. Т. 9, № 9. С. 1184–1213.
Бузмаков С.А., Гатина Е.Л. Зонирование особо охраняемой природной территории «Осинская лес-ная дача» // Географический вестник. 2009. № 1. С. 51–55.
Другов Ю.С., Родин А.А. Газохроматографический анализ загрязненного воздуха: практическое руководство. М.: Лаборатория знаний, 2020. 530 с.
Зябченко С.С. Сосновые леса европейского Севера. Л.: Наука, 1984. 248 с. EDN: TMRHBX.
Иллюстрированный определитель растений Пермского края / С.А., Овеснов, Е.Г. Ефимик, Т.В. Козьминых и др.; под ред. С.А. Овеснова. Пермь: Кн. мир, 2007. 743 с.
Исидоров В.А. Летучие выделения растений: cостав, скорость эмиссии и экологическая роль // СПб.: Алга, 1994. 188 с.
Особо охраняемые природные территории Пермского края / под ред. С.А. Бузмакова. Пермь: Астер, 2017. 516 с. EDN: UUQCCO.
Прянишников Д.Н. Популярная агрохимия. М.: Наука, 1965. 398 с.
Рысин Л.П. Сосновые леса Европейской части СССР. М.: Наука, 1975. 213 с. EDN: VZHYPN.
Таблицы и модели хода роста и продуктивности насаждений основных лесообразующих пород Северной Евразии (нормативно-справочные материалы). Изд. второе, доп. М., 2008. 887 с.
Aaltonen H. et al. Boreal pine forest floor biogenic volatile organic compound emissions peak in early summer and autumn // Agricul. Forest Meteorol. 2011. Vol. 151. P. 682–691. DOI: 10.1016/j.agrformet.2010.12.010. EDN: YHHIHW.
Aaltonen H. et al. Continuous VOC flux measurements on boreal forest floor // Plant Soil. 2013. Vol. 369. P. 241–256. DOI: 10.1007/s11104-012-1553-4. EDN: LOIIAO.
Atkinson R. Atmospheric chemistry of VOCs and NOx // Atmospheric environment. 2000. Vol. 34, №. 12–14. P. 2063–2101. EDN: AETVOV.
Atkinson R., Arey J. Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review // Atmospheric Environment. 2003. Vol. 37. P. 197–219. DOI: 10.1016/S1352-2310(03)00391-1. EDN: ER-SYLN.
Di Carlo P. et al. Missing OH reactivity in a forest: Evidence for unknown reactive biogenic VOCs // Sci-ence. 2004. Vol. 304, № 5671. P. 722–725.
Filella I. et al. Volatile organic compounds emissions in Norway spruce (Picea abies) in response to tem-perature changes // Physiologia Plantarum. 2007. Vol. 130, № 1. P. 58–66.
Glasius M., Goldstein A.H. Recent discoveries and future challenges in atmospheric organic chemistry // Environ. Sci. Technol., 2016. Vol. 50, № 6. P. 2754–2764. DOI: 10.1021/acs.est.5b05105. EDN: WVGQZT.
Grabmer W. et al. VOC emissions from Norway spruce (Picea abies L.[Karst]) twigs in the field—results of a dynamic enclosure study // Atmospheric Environment. 2006. Vol. 40. P. 128–137.
Gray C.M., Monson R.K., Fierer N. Emission of volatile organic compounds during the decomposition of plant litter // J. Geophys. Res. 2010. Vol. 115. Art. G03015. DOI: 10.1029/2010JG001291. EDN: NBOAMR.
Guenther A. et al. A global model of natural volatile organic compounds emission // J. Geophys. Res. 1995. Vol. 100. P. 8873– 8892.
Hakola H. et al. Emissions of volatile organic compounds from Norway spruce and potential atmospher-ic impacts // Frontiers in Forests and Global Change. 2023. Vol. 6. Art. 1116414. DOI: 10.3389/ffgc.2023.1116414. EDN: CBJRYL.
Heald C.L. et al. A simplified description of the evolution of organic aerosol composition in the atmos-phere // Geophysical Research Letters, 2010. Vol. 37, № 8. Art. L08803.
Hester R.E., Harrison R.M. (eds.). Volatile organic compounds in the atmosphere // Royal Society of Chemistry. 1995. Vol. 4. Art. 140.
Isebrands J.D. et al. Volatile organic compound emission rates from mixed deciduous and coniferous forests in Northern Wisconsin, USA // Atmos. Environ. 1999. Vol. 33. P. 2527–2536. DOI: 10.1016/S1352-2310(98)00250-7. EDN: ACTBVL.
Isidorov V.A. Non-methane hydrocarbons in the atmosphere of boreal forests: composition, emission rates, estimation of regional emission and photocatalytic transformation // Ecol. Bull. 1992. Vol. 42. P. 71–76.
Isidorov V., Jdanova M. Volatile organic compounds from leaves litter // Chemosphere, 2002. Vol. 48. P. 975–979. DOI: 10.1016/S0045-6535(02)00074-7. EDN: YKIWED.
Isidorov V.A. et al. Emission of volatile organic compounds by plants on the floor of boreal and mid-latitude forests // Journal of Atmospheric Chemistry, 2022. Vol. 79. P. 153–166. DOI: 10.1007/s10874-022-09434-3. EDN: CJOSZN.
Isidorov V.A. et al. Chemical composition of volatile and extractive compounds of pine and spruce leaf litter in the initial stages of decomposition // Biogeosciences. 2010. Vol. 7. P. 2785–2794. DOI: 10.5194/bg-7-2785-2010. EDN: MURVGM.
Isidorov V.A., Vinogorova V.T., Rafałowski K. HS–SPME analysis of volatile organic compounds of co-niferous needle litter // Atmos. Environ. 2003. Vol. 37. P. 4645–4650. DOI: 10.1016/j.atmosenv.2003.07.005. EDN: XRWEZM.
Isidorov V., Vinogorova V., Rafałowski K. Gas chromatographic determination of extractable com-pounds composition and emission rate of volatile terpenes from larch needle litter // J. Atmos. Chem. 2003. Vol. 50. P. 263–278.
Isidorov V.A., Zaitsev A.A. Reviews and syntheses: VOC emissions from soil cover in boreal and tem-perate natural ecosystems of the Northern Hemisphere // Biogeosciences Discussions, 2022. Vol. 19. P. 4715-4746. DOI: 10.5194/bg-19-4715-2022. EDN: ORZJNM.
Isidorov V.A., Zenkevich I.G., Ioffe B.V. Volatile organic compounds in the atmosphere of forest // At-mos. Environ. 1985. Vol. 19. P. 1–8. DOI: 10.1016/0004-6981(85)90131-3. EDN: XLOFMF.
Komenda M. et al. Comparability of biogenic VOC emission rate measurements under laboratory and ambient conditions at the example of monoterpene emissions from Scots pine (Pinus sylvestris) //Journal of atmospheric chemistry. 2003. Vol. 45. № 1. P. 1–23. EDN: EQPBFL.
Komenda M., Koppmann R. Monoterpene emissions from Scots pine (Pinus sylvestris): field studies of emission rate variabilities // Journal of Geophysical Research: Atmospheres. 2002. Vol. 107. № D13. Art. ACH 1-1-ACH 1-13.
Kourtchev I. et al. Enhanced volatile organic compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols // Sci. Rep. 2016. Vol. 6. Art. 35038.
Makkonen R. et al. BVOC-aerosol climate interactions in the global aerosol-climate model ECHAM5.5-HAM2 // Atmos. Chem. Phys. 2012. Vol. 12. P. 10077–10096. DOI: 10.5194/acp-12-10077-2012.
Mogensen D. et al. Simulations of atmospheric OH, O3 and NO3 reactivities within and above the boreal forest // Atmospheric Chemistry and Physics. 2015. Vol. 15, № 7. P. 3909–3932. DOI: 10.5194/acp-15-3909-2015. EDN: VGPYAD.
Shao M. et al. Volatile organic compound emissions from Scots pine: mechanisms and description by al-gorithms // Journal of Geophysical Research: Atmospheres. 2001. Vol. 106. № D17. P. 20483–20491.
Stocker T.F. et al. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change // Climate change. 2013. Vol. 5. P. 1–1552.
Tarvainen V. et al. Temperature and light dependence of the VOC emissions of Scots pine // Atmospher-ic Chemistry and Physics. 2005. Vol. 5, № 4. P. 989–998.
van Meeningen Y. et al. Isoprenoid emission variation of Norway spruce across a European latitudinal transect // Atmos. Environ. 2017. Vol. 170. P. 45–57.
Yang Y. et al. Towards a quantitative understanding of total OH reactivity: A review // Atmospheric En-vironment. 2016. Vol. 134. P. 147–161.
Zhou P. et al. Simulating ozone dry deposition at a boreal forest with a multi-layer canopy deposition model // Atmospheric Chemistry and Physics. 2017. Vol. 17, № 2. P. 1361–1379. DOI: 10.5194/acp-17-1361-2017. EDN: YXJQBB.