Genome-wide association analysis for exterior traits in Tsarskoye Selo chicken breed

Main Article Content

Anastasiia I. Azovtseva
Natalia V. Dementieva
Anna E. Ryabova

Abstract

To date, poultry industry, which is an indispensable supplier of animal protein, almost entirely depends on foreign commercial crosses. In this regard special attention should be paid to local poultry breeding and available genetic resources. Exterior assessment in an important part of selection, as animal’s appearance is an indication of health, breed affiliation, predisposition to productive use and adaptability to housing conditions. However, the selection rate depends on both phenotypic and genetic data. Recently special attention has been paid to GWAS studies – a genome-wide association search that identifies genome regions presumably responsible for certain traits’ expression. The aim of the study was to identify genetic associations with exterior traits in the Tsarskoye Selo chicken breed. For this purpose, we performed exterior assessment of the birds (n=96), blood sampling and DNA extraction, as well as genome-wide genotyping using Illumina Chicken 60K SNP iSelectBeadChip (Illumina Inc., USA). GWAS analysis and annotation of candidate genes were performed based on genome data obtained. As a result, 6 suggestive SNPs associated with chest girth, tibia length, tarsus length, and chest angle were obtained. Most genes in the identified loci are involved in processes of bone formation and bone homeostasis, which indirectly regulate the biological growth potential of an individual. The identified candidate genes can be recommended for use in marker-assisted selection of Tsarskoye Selo breed. Also, to confirm the fundamental role of the identified genes in formation of body size characteristics, studies on other chicken breeds are needed.

Article Details

How to Cite
Azovtseva А. И., Dementieva Н. В., & Ryabova А. Е. (2025). Genome-wide association analysis for exterior traits in Tsarskoye Selo chicken breed. Bulletin of Perm University. Biology, (1), 69–79. https://doi.org/10.17072/1994-9952-2025-1-69-79
Section
Генетика
Author Biographies

Anastasiia I. Azovtseva, Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L.K. Ernst Federal Re-search Center for Animal Husbandry, Pushkin, St. Petersburg, Russia

PhD student, junior researcher

Natalia V. Dementieva, Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L.K. Ernst Federal Re-search Center for Animal Husbandry, Pushkin, St. Petersburg, Russia

Cand. Biol. Sci., leading researcher, head of the laboratory of molecular biology

Anna E. Ryabova, Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L.K. Ernst Federal Re-search Center for Animal Husbandry, Pushkin, St. Petersburg, Russia

PhD student, junior researcher

References

Азовцева А.И., Дементьева Н.В. Факторы, влияющие на крепость костяка кур // Генетика и разведе-ние животных. 2023. № 3. С. 74–85. DOI: 10.31043/2410-2733-2023-3-74-85. EDN: FFLJXL.

Буяров А.В., Буяров В.С. Животноводство и птицеводство России: состояние, тенденции и перспек-тивы развития в современных экономических условиях // Вестник Воронежского государственного аг-рарного университета. 2022. Т. 15, № 4. С. 108–123. DOI: 10.53914/issn2071-2243_2022_4_108. EDN: MMYQWZ.

Вахрамеев А.Б., Макарова А.В. Экстерьерная оценка кур. Дубровицы, 2021. 227 с.

Вахрамеев А.Б., Дементьева Н.В., Федорова З.Л., Позовникова М.В. Оценка продуктивности поро-ды кур царскосельская // Птицеводство. 2024. № 1. С. 5–11.

Гришина Д.С. Наследуемость и повторяемость фенотипа гусей генофондного стада // Владимир-ский земледелец. 2021. Т. 4, № 98. С. 62–68. DOI: 10.24412/2225-2584-2021-4-62-68. EDN: IPYPGT.

Ларкина Т.А. и др. Генетическая изменчивость локуса NCAPG-LCORL у кур локальных пород на основе данных SNP-генотипирования // Молекулярно-генетические технологии анализа экспрессии ге-нов продуктивности и устойчивости к заболеваниям животных: материалы 3-й Междунар. науч.-практ. конф. М.: Сельскохозяйственные технологии, 2021. С. 133–146.

Федорова Е.С., Станишевская О.И., Дементьева Н.В. Современное состояние и проблемы племен-ного птицеводства в России (обзор) // Аграрная наука Евро-Северо-Востока. 2020. Т. 21, № 3. С. 217–232. DOI: 10.30766/2072-9081.2020.21.3.217-232. EDN: SRMKSH.

Alessandroni L., Sagratini G., Gagaoua M. Proteomics and bioinformatics analyses based on two-dimensional electrophoresis and LC-MS/MS for the primary characterization of protein changes in chicken breast meat from divergent farming systems: Organic versus antibiotic-free // Food Chemistry (Oxford). 2024. Vol. 8. Art. 100194. DOI: 10.1016/j.fochms.2024.100194. EDN: UCQLLG.

Cai K. et al. Genome-wide association analysis identify candidate genes for feed efficiency and growth traits in Wenchang chickens // BMC Genomics. 2024. Vol. 25, № 1. Art. 645. DOI: 10.1186/s12864-024-10559-w. EDN: MFIZYL.

Chen A., Zhao X., Zhao X. et al. Genetic Foundation of Male Spur Length and Its Correlation with Fe-male Egg Production in Chickens // Animals (Basel). 2024. Vol. 14, № 12. Art. 1780. DOI: 10.3390/ani14121780. EDN: JYDBNM.

Chen A., Zhao X., Wen J. et al. Genetic parameter estimation and molecular foundation of chicken beak shape // Poult. Sci. 2024. Vol. 103, № 6. Art. 103666. DOI: 10.1016/j.psj.2024.103666. EDN: JVEIZX.

Dillon S. et al. How To Build a Bone: PHOSPHO1, Biomineralization, and Beyond // JBMR plus. 2019. Vol. 3, № 7. Art. e10202. DOI: 10.1002/jbm4.10202. EDN: ACFSVY.

Duan P., Bonewald L.F. The role of the wnt/β-catenin signaling pathway in formation and maintenance of bone and teeth // Int. J. Biochem. Cell Biol. 2016. Vol. 77 (Pt A). P. 23–29.

Gabe M.B.N. et al. GIP and GLP-2 together improve bone turnover in humans supporting GIPR-GLP-2R co-agonists as future osteoporosis treatment // Pharmacol. Res. 2022. Vol. 176. Art. 106058. DOI: 10.1016/j.phrs.2022.106058. EDN: FMHKGK.

Gaudin-Audrain C. et al. Glucose-dependent insulinotropic polypeptide receptor deficiency leads to mod-ifications of trabecular bone volume and quality in mice // Bone. 2013. Vol. 53, № 1. P. 221–230. DOI: 10.1016/j.bone.2012.11.039.

Gori F., Schipani E., Demay M.B. Fibromodulin is expressed by both chondrocytes and osteoblasts dur-ing fetal bone development // J. Cell Biochem. 2001. Vol. 82, № 1. P. 46–57. DOI: 10.1002/jcb.1115.

Hua G. et al. Genetic basis of chicken plumage color in artificial population of complex epistasis // Anim. Genet. 2021. Vol. 52, № 5. P. 656–666. DOI: 10.1111/age.13094. EDN: IFCGUH.

Hudson D.M. et al. P3h3-null and Sc65-null Mice Phenocopy the Collagen Lysine Under-hydroxylation and Cross-linking Abnormality of Ehlers-Danlos Syndrome Type VIA // J. Biol. Chem. 2017. Vol. 292, № 9. P. 3877–3887. DOI: 10.1074/jbc.M116.762245.

Javaheri B. et al. Phospho1 deficiency transiently modifies bone architecture yet produces consistent modification in osteocyte differentiation and vascular porosity with ageing // Bone. 2015. Vol. 81. P. 277–291. DOI: 10.1016/j.bone.2015.07.035.

Kang H. et al. Genome-wide association study identifies a novel candidate gene for egg production traits in chickens // Anim. Genet. 2024. Vol. 55, № 3. P. 480–483. DOI: 10.1111/age.13427. EDN: FSEDAZ.

Kubota T. et al. Biological implications of fetuin for bone remodeling system and possible evidence for its use in heterotopic ossification // J. Oral. Maxillofac. Surg. Med. Pathol. 2012. Vol. 24, № 1. P. 36-41. DOI: 10.1016/j.ajoms.2011.08.003.

Liu H. et al. Effect of gut hormones on bone metabolism and their possible mechanisms in the treatment of osteoporosis // Front Pharmacol. 2024. Vol. 15. Art. 1372399. DOI: 10.3389/fphar.2024.1372399. EDN: LWRKNE.

Liu J. et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities // Signal Transduct Target Ther. 2022. Vol. 7, № 1. Art. 3. DOI: 10.1038/s41392-021-00762-6. EDN: EFULDC.

Lu Y. et al. Identification of candidate genes affecting the tibia quality in Nonghua duck // Poult Sci. 2024. Vol. 103, № 4. Art. 103515. DOI: 10.1016/j.psj.2024.103515. EDN: RCEAFQ.

Luo W. et al. Investigating the genetic determination of duration-of-fertility trait in breeding hens // Sci. Rep. 2024. Vol. 14, № 1. Art. 14819. DOI: 10.1038/s41598-024-65675-0. EDN: OCHWOI.

Macrae V.E. et al. Inhibition of PHOSPHO1 activity results in impaired skeletal mineralization during limb development of the chick // Bone. 2010. Vol. 46, № 4. P. 1146–1155. DOI: 10.1016/j.bone.2009.12.018.

Mocros M.W. et al. PHOSPHO1 is essential for normal bone fracture healing: An Animal Study // Bone Joint Res. 2018. Vol. 7, № 6. P. 397–405. DOI: 10.1302/2046-3758.76.BJR-2017-0140.R2.

Noubissi F.K. et al. Cross-Talk between Wnt and Hh Signaling Pathways in the Pathology of Basal Cell Carcinoma // Int. J. Environ. Res. Public. Health. 2018. Vol. 15, № 7. Art. 1442. DOI: 10.3390/ijerph15071442.

Paccez J.D. et al. DCUN1D1 and neddylation: Potential targets for cancer therapy // Biochim. Biophys. Acta Mol. Basis Dis. 2024. Vol. 1870, № 7. Art. 167308. DOI: 10.1016/j.bbadis.2024.167308. EDN: LQTTFD.

Park S. et al. B-cell translocation gene 2 (BTG2) regulates vertebral patterning by modulating bone mor-phogenetic protein/smad signaling // Mol. Cell Biol. 2004. Vol. 24, № 23. P. 10256–10262. DOI: 10.1128/MCB.24.23.10256-10262.2004.

Petrie M.A. et al. Distinct Skeletal Muscle Gene Regulation from Active Contraction, Passive Vibration, and Whole Body Heat Stress in Humans // PloS one. 2016. Vol. 11, № 8. Art. e0160594. DOI: 10.1371/journal.pone.0160594.

Rucci N. et al. Proline/arginine-rich end leucine-rich repeat protein N-terminus is a novel osteoclast an-tagonist that counteracts bone loss // J. Bone Miner. Res. 2013. Vol. 28, № 9. P. 1912–1924. DOI: 10.1002/jbmr.1951.

Skov-Jeppesen K. et al. Subcutaneous GIP and GLP-2 inhibit nightly bone resorption in postmenopausal women: A preliminary study // Bone. 2021. №152. Art. 116065. DOI: 10.1016/j.bone.2021.116065. EDN: PXWKXQ.

Tabti R. et al. Development of prohibitin ligands against osteoporosis // Eur. J. Med. Chem. 2021. Vol. 210. Art. 112961. DOI: 10.1016/j.ejmech.2020.112961. EDN: PBGNCV.

Tevlin R. et al. Denervation during mandibular distraction osteogenesis results in impaired bone for-mation // Sci. Rep. 2023. Vol. 13, № 1. Art. 2097. DOI: 10.1038/s41598-023-27921-9. EDN: KLXXYL.

Wang W. et al. FOXKs promote Wnt/β-catenin signaling by translocating DVL into the nucleus // Dev. Cell. 2015. Vol. 32, № 6. P. 707–718.

Wang X.G. et al. Genome-wide association analysis of eggshell color of an F2 generation population re-veals candidate genes in chickens // Animal. 2024. Vol. 18, № 6. Art. 101167. DOI: 10.1038/s41598-023-27921-9. EDN: KLXXYL.

Wang Y. et al. Genetic Dissection of Growth Traits in a Unique Chicken Advanced Intercross Line // Front Genet. 2020. Vol. 11. Art. 894. DOI: 10.3389/fgene.2020.00894. EDN: DLBTEM.

Wang Z. et al., InDels within caprine IGF2BP1 intron 2 and the 3'-untranslated regions are associated with goat growth traits // Anim. Genet. 2020. Vol. 51, № 1. P. 117–121. DOI: 10.1111/age.12871.

Wong K.M. et al. Mutations in TAF8 cause a neurodegenerative disorder // Brain. 2022. Vol. 145, № 9. P. 3022–3034. DOI: 10.1093/brain/awac154. EDN: HQQWKO.

Xiao L. et al. A large-scale comparison of the meat quality characteristics of different chicken breeds in South China // Poult. Sci. 2024. Vol. 103, № 6. Art. 103740. DOI: 10.1016/j.psj.2024.103740. EDN: XYBTOA.

Yadav M.C. et al. Loss of skeletal mineralization by the simultaneous ablation of PHOSPHO1 and alka-line phosphatase function: a unified model of the mechanisms of initiation of skeletal calcification // J. Bone. Miner. Res. 2011. Vol. 26, № 2. P. 286–297. DOI: 10.1002/jbmr.195.

Yang Q. et al, Genetic Analysis of Egg Production Traits in Luhua Chickens: Insights from a Multi-Trait Animal Model and a Genome-Wide Association Study // Genes (Basel). 2024. Vol. 15, № 6. Art. 796. DOI: 10.3390/genes15060796. EDN: JGRLJB.