Microbiological analysis of peat therapeutic mud from the Taborli-3 deposit

Main Article Content

Lyaysan F. Gafarova
W. Kurdi
Galina Yu. Yakovleva
Alexey I. Kolpakov
Olga N. Ilinskaya

Abstract

Peat mud (peloids) are natural organomineral complexes formed during the decomposition of organic residues in swampy areas under conditions of lack of oxygen. They have a high heat capacity and contain biologically active substances (salts, gases, biostimulants, metabolites of organisms, etc.), as well as living microorganisms. However, the microbial composition of peloids is practically unknown. The purpose of the work was to analyze the microbial composition of peat peloids from the Taborli-3 deposit (Tatarstan Republic) according to sanitary and bacteriological characteristics, the range of cultivated microorganisms, molecular-genetic determination of the prokaryotic metagenome and its functional potential. During 2021-2023 7 samples of peloids from the Taborli-3 deposit were studied. Sanitary and bacteriological analysis was carried out in accordance with the control program of sanatoriums using this mud. Taxonomic identification of the isolated microorganism cultures was carried out using time-of-flight mass spectrometry with matrix-assisted laser desorption/ionization MALDI-TOF MS. Molecular-genetic analysis of the microbial community was performed by sequencing 16S rRNA using Illumina MiSeq, subsequent sequence analysis was carried out using the Mothur software package on Galaxy platform. Bacterial communities of peloids were characterized, the dominance of representatives of the phyla Firmicutes (22%) and Proteobacteria (36%) was established. At the family level, Streptococcaceae, Ruminicoccaceae, Lactobacillaceae, Comamondaceae and Sphingomonadaceae were dominant. The functional potential of the communities confirms that peloid bacteria contain the main genes for the metabolism of carbohydrates, lipids, vitamins, amino acids and nucleotides, and are also capable to utilize xenobiotics. The microbiome of therapeutic mud from the Taborli-3 deposit was characterized for the first time. Monitoring the composition of microbial communities of therapeutic mud is an important component for assessing the contribution of microorganisms and their metabolites to the healing effect of peloid therapy.

Article Details

How to Cite
Gafarova Л. Ф., Kurdi У. ., Yakovleva Г. Ю. ., Kolpakov А. И. ., & Ilinskaya О. Н. . (2025). Microbiological analysis of peat therapeutic mud from the Taborli-3 deposit. Bulletin of Perm University. Biology, (1), 21–31. https://doi.org/10.17072/1994-9952-2025-1-21-31
Section
Микробиология
Author Biographies

Lyaysan F. Gafarova, Kazan (Volga Region) Federal University, Kazan, Russia

Graduate student of the Department of Microbiology

W. Kurdi, Kazan (Volga Region) Federal University, Kazan, Russia

graduate student of the Department of Microbiology

Galina Yu. Yakovleva, Kazan (Volga Region) Federal University, Kazan, Russia

PhD, Associate Professor of the Department of Microbiology

Alexey I. Kolpakov, Kazan (Volga Region) Federal University, Kazan, Russia

PhD, Associate Professor of the Department of Microbiology

Olga N. Ilinskaya, Kazan (Volga Region) Federal University, Kazan, Russia

doctor of biology, professor, head of the Department of Microbiology

References

Вавилин В.А. Время оборота биомассы и деструкция органического вещества в системах биологи-ческой очистки. М.: Наука, 1986. 144 с.

Гайдукова Т.Ю. и др. Торфяные лечебные грязи: новые подходы к реабилитации пациентов после операций на позвоночнике // Вопросы курортологии, физиотерапии и лечебной физической культуры. 2023. Т. 100, № 3-2. С. 58–59. EDN: ZQECTW

Злотников А.К. и др. Физиологические и биохимические свойства бактериальной ассоциации Klebsiella terrigena E6 и Bacillus firmus E3 // Прикладная биохимия и микробиология. 2007. Т. 43, № 3. С. 338–346. EDN: IAGBQD

Максимов Г.С. и др. Минеральный состав грязи Сакского месторождения // Минералы: строение, свойства, методы исследования. 2021. № 12. С. 91–92. EDN: ALIZSF

Марданова А.М. и др. Поиск и выделение новых штаммов бактерий-антагонистов фитопатогенных микромицетов рода Fusarium // Биоразнообразие и экология грибов и грибоподобных организмов Север-ной Евразии: материалы Всерос. конф. Екатеринбург, 2015. С. 149–151.

Нагызбеккызы Э. и др. Выделение и скрининг микроорганизмов, перспективных при создании на их основе заквасок для получения биогаза из сточной воды // Научное обозрение. Биологические науки. 2022. Т. 3. С. 27–33. doi: 10.17513/srbs.1280. EDN: TGXJXR

Паспорт месторождения Таборли-3 [Электронный ресурс]. URL: http://reports.geologyscience.ru/kadastr_view_one.php?id=43154 (дата обращения: 04.12.2023).

Пелоидотерапия больных бронхиальной астмой с сопутствующей патологией / И.И. Антипова, Т.Н. Зарипова, Н.Н. Симагаева и др. Томск: STT, 2012. 244 с.

Перспективы развития санаторно-курортного туризма в регионе (на материалах Республики Та-тарстан) / Г.Н. Булатова, Э.И. Байбаков, В.А. Рубцов и др. // Приоритетные направления и проблемы развития внутреннего и международного туризма в России: материалы IV Всерос. с междунар. участием науч.-практ. конф, Симферополь, 2020. С. 204–208.

Санаторий Шифалы Су Ижминводы [Электронный ресурс] // Санаторий Шифалы Су Ижминво-ды: официальный сайт. URL: https://xn--f1adbpg.xn--p1ai/%D0%BB%D0%B5%D1%87%D0% B5%D0%BD%D0%B8%D0%B5/%D0%BF%D1%80%D0%B8%D1%80%D0%BE%D0%B4%D0%BD%D1%8B%D0%B5-%D0%BB%D0%B5%D1%87%D0%B5%D0%B1%D0%BD%D1%8B%D0%B5-%D1%84%D0% B0%D0%BA%D1%82%D0%BE%D1%80%D1%8B/#torf (дата обращения: 04.12.2023).

Таборли-3 [Электронный ресурс]: Российский федеральный геологический фонд: официальный сайт. URL: https://www.rfgf.ru/gkm/itemview.php?id=43154 (дата обращения: 04.12.2023).

Tatarica: Татарская энциклопедия. [Электронный ресурс]. Казань, 2018. URL: https://tatarica.org/ru (дата обращения: 04.12.2023).

Ялтанец И.М. и др. Научно-практическое использование сапропелевых илов и торфяных грязей в комплексном санаторно-курортном лечении // Горный информационно-аналитический бюллетень. 2004. № 12. С. 28–39. EDN: MUMDST

Adefiranye O.O. et al. Draft genome of Lysinibacillus fusiformis PwPw_T2 isolated from Ananas como-sus revealing acetic acid producing and xenobiotic degrading enzymes // Microbiol. Resour. Announc. 2023. Vol. 12, № 12. Art. 0075323. doi: 10.1128/MRA.00753-23.

Bagade A. et al. Characterisation of hyper tolerant Bacillus firmus L-148 for arsenic oxidation // Environ Pollut. 2020. Vol. 261. Art. 114124. doi: 10.1016/j.envpol.2020.114124.

Barathi S. et al. Biodegradation of textile dye Reactive Blue 160 by Bacillus firmus (Bacillaceae: Bacil-lales) and non-target toxicity screening of their degraded products // Toxicol. Rep. 2019. Vol. № 7. Р. 16–22. doi: 10.1016/j.toxrep.2019.11.017.

DeSantis T.Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB // Appl. Environ. Microbiol. 2006. Vol. 72, №7. Р. 5069–5072. doi: 10.1128/aem.03006-05.

Guffanti A.A. et al. Bioenergetic Properties of Alkaline-tolerant and Alkalophilic Strains of Bacillus // Journal of General MicrobioIogy. 1980. Vol. 119, № 1. Р. 79–86. doi: 10.1099/00221287-119-1-79.

John W.C. et al. Evaluation of biosurfactant production potential of Lysinibacillus fusiformis MK559526 isolated from automobile-mechanic-workshop soil // Braz. J. Microbiol. 2021. Vol. 52, № 2. Р. 663–674. doi: 10.1007/s42770-021-00432-3.

Kawahara K. et al. Occurrence of an alpha-galacturonosyl-ceramide in the dioxin-degrading bacterium Sphingomonas wittichii // FEMS Microbiol. Lett. 2002. Vol. 214, № 2. Р. 289–294. doi: 10.1111/j.1574-6968.2002.tb11361.x.

Mandal K. et al. Bioremediation of fipronil by a Bacillus firmus isolate from soil // Chemosphere. 2014. Vol. 101. Р. 55–60. doi: 10.1016/j.chemosphere.2013.11.043.

Mehta J. et al. Decolourization of simulated dye in aqueous medium using bacterial strains // European Journal of Advances in Engineering and Technology. 2015. Vol. 2, № 3. Р. 9–18.

Nagpal S. et al. iVikodak-A platform and standard workflow for inferring, analyzing, comparing, and visualizing the functional potential of microbial communities // Front Microbiol. 2019. Vol. 9. Art. 3336. doi: 10.3389/fmicb.2018.03336.

Nandy S. et al. Community Acquired Bacteremia by Sphingomonas paucimobilis: Two Rare Case Re-ports // J. Clin. Diagn. Res. 2013. Vol. 7, № 12. Р. 2947–2949. doi: 10.7860/JCDR/2013/6459.3802.

Oren A., Göker M., Sutcliffe I.C. Executive Board of the International Committee on Systematics of Prokaryotes. New Phylum Names Harmonize Prokaryotic Nomenclature // mBio. 2022. Vol. 13, № 5. Art. 0147922. doi: 10.1128/mbio.01479-22.

Passera A. et al. Characterization of Lysinibacillus fusiformis strain S4C11: In vitro, in planta, and in sili-co analyses reveal a plant-beneficial microbe // Microbiol Res. 2021. Vol. 244. Art. 126665. doi: 10.1016/j.micres.2020.126665.

Prihanto A.A. et al. Optimization of glutaminase-free L-asparaginase production using mangrove endo-phytic Lysinibacillus fusiformis B27 // F1000 Res. 2019. Vol. 8. Art. 1938. doi: 10.12688/f1000research.21178.2.

Prokesová L. et al. Immunostimulatory effect of Bacillus firmus on mouse lymphocytes // Folia Micro-biol. (Praha). 2002. Vol. 47, № 2. Р.193–197. doi: 10.1007/BF02817682.

Rashmi M. et al. Biodegradation of di-2-ethylhexyl phthalate by Bacillus firmus MP04 strain: paramet-ric optimization using full factorial design // Biodegradation. 2023. Vol. 34, № 6. Р. 567–579. doi: 10.1007/s10532-023-10043-4.

Reyes-Cervantes A. et al. Evaluation in the performance of the biodegradation of herbicide diuron to high concentrations by Lysinibacillus fusiformis acclimatized by sequential batch culture // J. Environ. Manage. 2021. Vol. 291. Art. 112688. doi: 10.1016/j.jenvman.2021.112688.

Teeravivattanakit T. et al. Digestibility of Bacillus firmus K-1 pretreated rice straw by different commer-cial cellulase cocktails // Prep. Biochem. Biotechnol. 2022. Vol. 52, № 5. Р. 508–513. doi: 10.1080/10826068.2021.1969575.

Wu S. et al. Simultaneous nitrogen removal via heterotrophic nitrification and aerobic denitrification by a novel Lysinibacillus fusiformis B301 // Water Environ. Res. 2023. Vol. 95, № 3. Art. e10850. doi: 10.1002/wer.10850.