Melatonin as a promising factor in correction of the intestinal microbiome in inflammatory bowel diseases

Main Article Content

Michael V. Osikov
Maksim V. Grechishkin
Yulia S. Shishkova
Marina A. Ilyinykh

Abstract

Inflammatory bowel diseases (IBD) include ulcerative colitis and Crohn's disease. The etiology and pathogenesis of IBD remain unclear, the most common hypothesis being that an abnormal immune response against the gut microbiome is triggered by environmental factors in genetically predisposed individuals. The disadvantages of first-line therapy for IBD are the occurrence of side effects in more than 30% of patients. In this regard, the development of new safe drugs that act mainly locally is relevant. The aim of the work is to analyze current data on the mechanisms of action, effects on the intestinal microbiome of melatonin in the context of possible use in IBD. Melatonin (MT) is a biologically active substance, synthesized in the body from tryptophan, and realizes its effects through MT-dependent and MT-independent receptors located in the cell membrane and nucleus. MT is involved in the regulation of circadian rhythms, has antioxidant and immunomodulatory effects. In experimental modeling of IBD and in clinical conditions, MT reduces the severity of the inflammatory process in the wall of the colon by interrupting the processes of lipid peroxidation and inactivation of free radicals, as well as by acting through specific receptors on the function of blood cells of lymphoid organs. MT in IBD leads to a qualitative and quantitative change in the intestinal microbiome, elimination of signs of dysbiosis, an increase in the number of short-chain fatty acid producers - Actinomycetota (Actinobacteria) and a decrease in the number of bacteria that increase the permeability of the intestinal barrier - Bacteroidota (Bacteroidetes). Presumably, MT has a bacteriostatic effect by binding free iron and acting on the NF-kB and STAT1 signaling pathways, which may be a factor in the correction of colon dysbiosis in IBD. Data on the effect of MT on the composition of the intestinal microbiome are a prerequisite for further preclinical studies and the possible use of melatonin in IBD in clinical practice.

Article Details

How to Cite
Osikov М. В. ., Grechishkin М. В., Shishkova Ю. С. ., & Ilyinykh М. А. . (2023). Melatonin as a promising factor in correction of the intestinal microbiome in inflammatory bowel diseases. Bulletin of Perm University. Biology, (3), 287–296. https://doi.org/10.17072/1994-9952-2023-3-287-296
Section
Иммунология
Author Biographies

Michael V. Osikov, South State Medical University, Chelyabinsk, Russia

Doctor of Medical Sciences, Professor, Head Department of Pathophysiology

Maksim V. Grechishkin, South State Medical University, Chelyabinsk, Russia

Laboratory assistant of the Department of Pathophysiology, specialist of the Department of Innovative Work of the Department for Scientific and Innovative Work

Yulia S. Shishkova, South State Medical University, Chelyabinsk, Russia

Doctor of Medical Sciences, Professor, Professor of the Department of Microbiology, Virology and Immunology

Marina A. Ilyinykh, South State Medical University, Chelyabinsk, Russia

Candidate of Biological Sciences, Associate Professor of the Department of Pathophysiology

References

Бурчаков Д.И., Успенская Ю.Б. Антиоксидантный, противовоспалительный и седативный эффекты мелатонина: результаты клинических исследований // Журнал неврологии и психиатрии им. С.С. Корса-кова. Спецвыпуски. 2017. № 4(2). С. 67–73. https://doi.org/10.17116/jnevro20171174267-73.

Осиков М.В., Кайгородцева Н. Сравнительный анализ противовоспалительного действия озона и 5-аминосалициловой кислоты при экспериментальном колите // Патологическая физиология и экспери-ментальная терапия. 2022. Т. 66, № 3. С. 91–100.

Осиков М.В., Симонян Е.В., Бакеева А.Е. Влияние экстракта корневищ куркумы длинной в составе ректальных суппозиториев на показатели перекисного окисления липидов в толстом кишечнике при экс-периментальной болезни Крона // Экспериментальная и клиническая гастроэнтерология. 2020. Т. 175(3). С. 80–86. DOI: 10.31146/1682-8658-ecg-175-3-80-86.

Осиков М.В. и др. Морфологические аспекты протекторного действия оригинальных ректальных суппозиториев с экстрактом куркумы при экспериментальной болезни Крона // Патологическая физио-логия и экспериментальная терапия. 2021. Т. 65, № 2. С. 67–77.

Осиков М.В. и др. Влияние витамина D3 в составе оригинальных ректальных суппозиториев на по-казатели окислительной модификации белков в толстом кишечнике при экспериментальном язвенном колите // Бюллетень экспериментальной биологии и медицины. 2020. Т. 170, №. 11. С. 563–568.

Barnes A. et al. Systematic review and meta-analysis of sleep quality in inactive inflammatory bowel dis-ease // JGH Open. 2022. Vol. 6, № 11. P. 738–744. doi: 10.1002/jgh3.12817.

da Silva J.L. et al. The Microbiota-Dependent Worsening Effects of Melatonin on Gut Inflammation // Microorganisms. 2023. Vol. 11, № 2. P. 460. doi: 10.3390/microorganisms11020460.

Esteban-Zubero E. et al. Melatonin's role as a co-adjuvant treatment in colonic diseases: A review // Life Sci. 2017. Vol. 170. P. 72–81. doi: 10.1016/j.lfs.2016.11.031.

Flemer B. et al. Tumour-associated and non-tumour-associated microbiota: Addendum // Gut Microbes. 2018. Jul 4; 9(4). Р. 369–373. doi: 10.1080/19490976.2018.1435246.

Gao Y. et al. Melatonin Receptors: A Key Mediator in Animal Reproduction // Vet. Sci. 2022. Vol. 9, № 7. P. 10. doi: 10.3390/vetsci9070309.

Guan Q. A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease // Journal of Immunology Research. 2019. Vol. 2019. Article number. 7247238. P. 16. doi: 10.1155/2019/7247238.

Gulcin I., Buyukokuroglu M.E., Kufrevioglu O.I. Metal chelating and hydrogen peroxide scavenging ef-fects of melatonin // J. Pineal. Res. 2003. May; 34(4). Р. 278–281. doi: 10.1034/j.1600-079x.2003.00042.x.

He F. et al. Bacteriostatic Potential of Melatonin: Therapeutic Standing and Mechanistic Insights // Front Immunol. 2021. May. 31, 12. Р. 683879. doi: 10.3389/fimmu.2021.683879.

Jeon H. et al. TDAG51 deficiency attenuates dextran sulfate sodium-induced colitis in mice // Sci Rep. 2022. Vol. 12, № 1. P. 13. doi: 10.1038/s41598-022-24873-4.

Jochum S.B. et al. Colonic Epithelial Circadian Disruption Worsens Dextran Sulfate Sodium-Induced Co-litis // Inflamm. Bowel. Dis. 2023. Vol. 29, № 3. P. 444–457. doi: 10.1093/ibd/izac219.

Kauppila A. et al. Inverse seasonal relationship between melatonin and ovarian activity in humans in a region with a strong seasonal contrast in luminosity // J. Clin. Endocrinol. Metab. 1987. Vol. 65, № 5. P. 823–828. doi: 10.1210/jcem-65-5-823.

Kim S. et al. Sirtuin 7 Inhibitor Attenuates Colonic Mucosal Immune Activation in Mice-Potential Ther-apeutic Target in Inflammatory Bowel Disease // Biomedicines. 2022. Vol. 10, № 11. P. 10. doi: 10.3390/biomedicines10112693.

Kim S.W. et al. Melatonin controls microbiota in colitis by goblet cell differentiation and antimicrobial peptide production through Toll-like receptor 4 signalling // Sci. Rep. 2020. Vol. 10, № 1. P. 9. doi: 10.1038/s41598-020-59314-7.

Lardone P.J. et al. Blocking of melatonin synthesis and MT(1) receptor impairs the activation of Jurkat T cells // Cell Mol. Life Sci. 2010. Vol. 67, № 18. P. 3163–3172. doi: 10.1007/s00018-010-0374-y.

Lee J.W.J. et al. Multi-omics reveal microbial determinants impacting responses to biologic therapies in inflammatory bowel disease // Cell Host Microbe. 2021. Vol. 29, № 8. P. 1294–1304. doi: 10.1016/j.chom.2021.06.019.

Limson J., Nyokong T., Daya S. The interaction of melatonin and its precursors with aluminium, cadmi-um, copper, iron, lead, and zinc: an adsorptive voltammetric study // J. Pineal. Res. 1998. Jan; 24(1). Р. 15–21. doi: 10.1111/j.1600-079x.1998.tb00361.x.

Liu G. et al. Melatonin alters amino acid metabolism and inflammatory responses in colitis mice // Ami-no Acids. 2017. Vol. 49, № 12. P. 2065–2071. doi: 10.1007/s00726-017-2489-z.

Liu J. et al. MT1 and MT2 Melatonin Receptors: A Therapeutic Perspective // Annu Rev. Pharmacol. Toxicol. 2016. Vol. 56. P. 361–383. doi: 10.1146/annurev-pharmtox-010814-124742.

Liu X.W., Wang C.D. Melatonin alleviates circadian rhythm disruption exacerbating DSS-induced colitis by inhibiting the distribution of HMGB1 in intestinal tissues // Int. Immunopharmacol. 2019. Vol. 73. P. 108–117. doi: 10.1016/j.intimp.2019.05.005.

Ma N. et al. Melatonin mediates mucosal immune cells, microbial metabolism, and rhythm crosstalk: A therapeutic target to reduce intestinal inflammation // Med. Res. Rev. 2020. Vol. 40, № 2. P. 606–632. doi: 10.1002/med.21628.

Marié I.J. et al. Tonic interferon restricts pathogenic IL-17-driven inflammatory disease via balancing the microbiome // eLife. 2021. Vol. 10. Article number e68371. P. 20. doi: 10.7554/eLife.68371.

Nikolaev G., Robeva R., Konakchieva R. Membrane Melatonin Receptors Activated Cell Signaling in Physiology and Disease // Int. J. Mol. Sci. 2021. Vol. 23, № 1. P. 23. doi: 10.3390/ijms23010471.

Qin T. et al. Melatonin Suppresses LPS-Induced Oxidative Stress in Dendritic Cells for Inflammatory Regulation via the Nrf2/HO-1 Axis // Antioxidants (Basel). 2022. Vol. 11, № 10. P. 12. doi: 10.3390/antiox11102012.

Ortiz A.M. et al. Experimental bacterial dysbiosis with consequent immune alterations increase in-trarectal SIV acquisition susceptibility // Cell Rep. 2023. Vol. 42, № 1. P. 15. doi: 10.1016/j.celrep.2023.112020.

Pan S. et al. Therapeutic potential of melatonin in colorectal cancer: Focus on lipid metabolism and gut microbiota // Biochim. Biophys. Acta Mol. Basis. Dis. 2022. Jan 1. 1868(1). Р. 166281. doi: 10.1016/j.bbadis.2021.166281.

Paulose J.K. et al. Human Gut Bacteria Are Sensitive to Melatonin and Express Endogenous Circadian Rhythmicity // PLoS One. 2016. Vol. 11, № 1. P. 9. doi: 10.1371/journal.pone.0146643.

Raphael I. et al. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases // Cytokine. 2015. Vol. 74, № 1. P. 5–17. doi: 10.1016/j.cyto.2014.09.011.

Reiter R.J. et al. Melatonin as a mitochondria-targeted antioxidant: one of evolution's best ideas // Cell Mol Life Sci. 2017. Vol. 74, № 21. P. 3863–3881. doi: 10.1007/s00018-017-2609-7.

Sibilano R., Frossi B., Pucillo C.E. Mast cell activation: a complex interplay of positive and negative sig-naling pathways. Eur J Immunol. 2014. Vol. 44, № 9. P. 2558–2566. doi: 10.1002/eji.201444546.

Tordjman S. et al. Melatonin: Pharmacology, Functions and Therapeutic Benefits // Curr. Neurophar-macol. 2017. Vol. 15, № 3. P. 434–443. doi: 10.2174/1570159X14666161228122115.

Vaccaro R. et al. Serotonin and Melatonin in Human Lower Gastrointestinal Tract // Diagnostics (Basel). 2023. Vol. 13, № 2. P. 9. doi: 10.3390/diagnostics13020204.

Vakadaris G. et al. The Role of Probiotics in Inducing and Maintaining Remission in Crohn's Disease and Ulcerative Colitis: A // Systematic Review of the Literature. Biomedicines. 2023. Vol. 11, № 2. P. 494. doi: 10.3390/biomedicines11020494.

Wu Y. et al. Melatonin alleviates titanium nanoparticles induced osteolysis via activation of butyr-ate/GPR109A signaling pathway // J. Nanobiotechnology. 2021. Jun. 6. 19(1). Р. 170. doi: 10.1186/s12951-021-00915-3.

Zhang B. et al. Gut Microbiota Dysbiosis Induced by Decreasing Endogenous Melatonin Mediates the Pathogenesis of Alzheimer's Disease and Obesity // Front Immunol. 2022. May 10. 13. 900132. doi: 10.3389/fimmu.2022.900132.

Zhao Z.X. et al. Melatonin Mitigates Oxazolone-Induced Colitis in Microbiota-Dependent Manner // Front Immunol. 2022. Vol. 12. Article number 783806. P. 11. doi: 10.3389/fimmu.2021.783806.