Investigation of differences in the IR spectra of earthworms as a possible way of their taxonomic identification
Main Article Content
Abstract
Article Details
References
Перель Т.С. Распространение и закономерности распределения дождевых червей фауны СССР. М.: Наука, 1979. 272 с.
Перель Т.С. Особенности фауны дождевых червей (Oligochaeta, Lumbricidae) в Алтайских рефуги-умах неморальной растительности // Доклады Академии наук СССР. 1985. Т. 283, № 3. С. 752–756.
Aw W.C., Dowell F.E., Ballard J.W. Using near-infrared spectroscopy to resolve the species, gender, age, and the presence of Wolbachia infection in laboratory-reared Drosophila // G3 (Bethesda). 2012. Vol. 2, № 9. P. 1057–1065. DOI: 10.1534/g3.112.003103.
Babiy K.A. et al. What determines ion content of lumbricid casts: soil type, species, or ecological group? // Polish Journal of Ecology. 2021. Vol. 69, № 2. P. 96–110. DOI: 10.3161/15052249PJE2021.69.2.003.
Blouin M. et al. A review of earthworm impact on soil function and ecosystem services: earthworm im-pact on ecosystem services // European Journal of Soil Science. 2013. Vol. 64. P. 161–182. DOI: 10.1111/ejss.12025.
Bottinelli N. et al. An explicit definition of earthworm ecological categories - Marcel Bouché’s triangle re-visited // Geoderma. 2020. Vol. 372. DOI: 10.1016/j.geoderma.2020.114361.
Bottinelli N., Capowiez Y. Earthworm ecological categories are not functional groups // Biology and Fertili-ty of Soils. 2021. Vol. 57. P. 329‒331. DOI: 10.1007/s00374-020-01517-1.
Bouché M. Lombriciens de France. Ecologie et Systematique. Paris: INRA, 1972. 671 p.
Csuzdi C., Koo J., Hong Y. The complete mitochondrial DNA sequences of two sibling species of lumbricid earthworms, Eisenia fetida (Savigny, 1826) and Eisenia andrei (Bouché, 1972) (Annelida, Crassiclitellata): comparison of mitogenomes and phylogenetic positioning // ZooKeys. 2022. Vol. 1097. P. 167–181. DOI: 10.3897/zookeys.1097.80216.
Da Silva R., Gutjahr A., De Morais J. Solving taxonomic Orthoptera problems by near infrared reflec-tance spectroscopy (NIRS): The case of Aganacris Walker, 1871 (Tettigoniidae: Phaneropterinae; Scudderini) // Zootaxa. 2018. Vol. 4461. P. 445–450. . DOI: 10.11646/ zoota xa.4464.3.10.
de Azevedo R.A. et al. Discrimination of termite species using near-infrared spectroscopy (NIRS) // Euro-pean Journal of Soil Biology. 2019. Vol. 93. 103084. DOI: 10.1016/j.ejsobi.2019.04.002.
Gautier M. et al. The genomic basis of color pattern polymorphism in the harlequin ladybird // Current Biology. 2018. Vol. 28. e3297. DOI: 10.1016/j.cub.2018.08.023.
Johnson J.B. Discrimination of Gonipterini weevil genera using near infrared spectroscopy // Journal of Near Infrared Spectroscopy. 2022. Vol. 30, № 5. P. 264–269. DOI: 10.1177/09670335221117300.
Jouquet P. et al. Potential of near infrared reflectance spectroscopy (NIRS) for identifying termite species // European Journal of Soil Biology. 2014. Vol. 60. P. 49–52. DOI: 10.1016/j.ejsobi.2013.11.004.
Jouquet P. et al. Evidence from mid-infrared spectroscopy (MIRS) that the biochemical fingerprints of Odontotermes obesus colonies change according to their geographical location and age // Insectes Sociaux. 2018. Vol. 65. P. 77–84. DOI: 10.1007/s00040-017-0589-0.
Latif R., Malek R., Csuzdi C. When morphology and DNA are discordant: Integrated taxonomic studies on the Eisenia fetida/andrei complex from different parts of Iran (Annelida, Clitellata: Megadrili) // European Journal of Soil Biology. 2017. Vol. 81. P. 55–63. DOI: 10.1016/j.ejsobi.2017.06.007.
Lavelle P. et al. Ecosystem engineers in a self-organized soil: A review of concepts and future research questions // Soil Science. 2016. Vol. 181, № 3–4. P. 91–109. DOI: 10.1097/SS.0000000000000155.
Lê S., Josse J., Husson F. FactoMineR: An R package for multivariate analysis // Journal of Statistical Software. 2008. Vol. 25, № 1. P. 1–18. DOI: 10.18637/jss.v025.i01.
Lubbers I.M. et al. Greenhouse-gas emissions from soils increased by earthworms // Nature Climate Change. 2013. Vol. 3. P. 187–194. DOI: 10.1038/nclimate1692.
Movasaghi Z., Rehman S., ur Rehman I. Fourier transform infrared (FTIR) spectroscopy of biological tissues // Applied Spectroscopy Reviews. 2008. Vol. 43, № 2. P. 134–179. DOI: 10.1080/05704920701829043.
Pham T. et al. Mid-infrared spectroscopy of earthworm bodies to investigate their species belonging and their relationship with the soil they inhabit // Applied Soil Ecology. 2021. Vol. 162. 103894. DOI: 10.1016/j.apsoil.2021.103894
Raupach M.J. et al. The application of “-omics” technologies for the classification and identification of animals // Organisms Diversity & Evolution. 2016. Vol. 16. P. 1–12. DOI: 10.1007/s13127-015-0234-6.
Richard B. et al. Reintegrating earthworm juveniles into soil biodiversity studies: species identification through DNA barcoding // Molecular Ecology Resources. 2010. Vol. 10. P. 606‒614. DOI: 10.1111/j.1755-0998.2009.02822.x.
Rodríguez-Fernández J.I. et al. Barcoding without DNA? Species identification using near infrared spec-troscopy // Zootaxa. 2010. Vol. 2933. P. 46–54. DOI: 10.11646/zootaxa.2933.1.3.
Shekhovtsov S.V. et al. Cryptic genetic lineages in Eisenia nordenskioldi pallida (Oligochaeta, Lumbri-cidae) // European Journal of Soil Biology. 2016. Vol. 75. P. 151–156. DOI: 10.1016/j.ejsobi.2016.06.004.
Shekhovtsov S.V. et al. DNA barcoding: how many earthworm species are there in the south of West Si-beria? // Russian Journal of Genetics: Applied Research. 2017. Vol. 7, № 1. P. 57–62. DOI: 10.1134/S2079059717010130.
Sikulu M.T. Non-destructive near infrared spectroscopy for simultaneous prediction of age and species of two major African malaria vectors: An. gambiae and An. Arabiensis // NIR News. 2014. Vol. 25, № 5. P. 4–6. DOI: 10.1255/nirn.1455.
Srivathsan A. et al. 1D MinION Sequencing for large-scale species discovery: 7000 scuttle flies (Diptera: Phoridae) from one site in Kibale national park (Uganda) revealed to belong to> 650 species // bioRxiv. 2019. 622365. DOI: 10.1101/622365.
Tao D. et al. Accurate identification of the sex and species of silkworm pupae using near infrared spec-troscopy // Journal of Applied Spectroscopy. 2018. Vol. 85. P. 949–952. DOI: 10.1007/s10812-018-0744-z.
Tiunov A.V. et al. Invasion patterns of Lumbricidae into the previously earthworm-free areas of north-eastern Europe and the western Great Lakes region of North America // Biological Invasions. 2006. Vol. 8. P. 1223–1234. DOI: 10.1007/s10530-006-9018-4.
van Groenigen J.W. et al. How fertile are earthworm casts? A meta-analysis // Geoderma. 2019. Vol. 338. P. 525–535. DOI: 10.1016/j.geoderma.2018.11.001.
Vance C.K. et al. Near infrared spectroscopy in wildlife and biodiversity // Journal of near Infrared Spec-troscopy. 2016. Vol. 24. P. 1–25. DOI: 10.1255/jnirs.1199.
Vaupel A., Hommel B., Beule L. High-resolution melting (HRM) curve analysis as a potential tool for the identification of earthworm species and haplotypes // PeerJ. 2022. Vol. 10. e13661. DOI: 10.7717/peerj.13661.
Velasquez E. et al. This ped is my ped: Visual separation and near infrared spectra allow determination of the origins of soil macroaggregates // Pedobiologia. Vol. 51, № 1. 2007. P. 75–87. DOI: 10.1016/j.pedobi.2007.01.002.
Vorobeichik E. et al. Long-term dynamics of the abundance of earthworms and enchytraeids (Annelida, Clitellata: Lumbricidae, Enchytraeidae) in forests of the Central Urals, Russia // Biodiversity Data Journal. 2021. Vol. 9. e75466. DOI: 10.3897/BDJ.9.e75466.