Degradation of chlorobenzoic acids by strains Rhodococcus ruber P25 and Microbacterium oxydans B51 under cometabolism

Main Article Content

Darya O. Egorova

Abstract

The destructor strains of polychlorinated biphenyls (PCBs) Rhodococcus ruber P25 and Microbacterium oxydans B51 decompose the main intermediates of aerobic bacterial destruction of PCBs - chlorobenzoic acids (CBC). It was found that when cultivating the M. oxydans B51 strain on biphenyl as a carbon source, colony–forming units increase by four orders of magnitude in 4 days, and when cultured on 2XBC - by three orders of magnitude in three days. The level of destruction of the substrate was 99.0–99.5%. When cultured under cometabolism conditions (CBC and biphenyl are present in the medium), the specific growth rate of M. oxydans strains B51 and R. ruber P25 increased by 1.53–1.58 times, and the destruction efficiency of 2XBC and 4XBC was 98.9–99.2%. The main metabolites of bacterial transformation of biphenyl and CBC in the medium have not been recorded, but the accumulation of chlorine ions has been established (after 5 days. the cultivation concentration was 64.98–98.05% of the maximum possible). The results obtained indicate the effective destruction of CKD by M. oxydans strains B51 and R. ruber P25 in the presence of an additional carbon source.

Article Details

How to Cite
Egorova Д. О. . (2022). Degradation of chlorobenzoic acids by strains Rhodococcus ruber P25 and Microbacterium oxydans B51 under cometabolism. Bulletin of Perm University. Biology, (3), 218–225. https://doi.org/10.17072/1994-9952-2022-3-218-225
Section
Микробиология
Author Biography

Darya O. Egorova, Institute of Ecology and Genetics of Microorganisms, Ural Branch RAS

PhD of biology, associate professor, senior researcher

References

Плотникова Е.Г. и др. Особенности разложение 4-хлорбифенила и 4-хлорбензойной кислоты штаммом Rhodococcus ruber Р25 // Микробиология. 2012. Т. 81, № 2. С. 159–170. DOI: 10.1134/S0026261712020117.

Рыбкина Д.О. и др. Новый аэробный грамположительный микроорганизм с уникальными свойствами деструкции орто- и пара-хлорированных бифенилов // Микробиология. 2003. Т. 72, № 6. C. 759–765.

Федоров Л.А. Диоксины как экологическая опасность: ретроспектива и перспективы. М.: Наука, 1993. 266 с.

Adebusoye S.A., Miletto M. Characterization of multiple chlorobenzoic acid-degrading organisms from pristine and contaminated system: mineralization of 2,4-dichlorobenzoic acid // Bioresource Technology. 2011. Vol. 102. P. 3041–3048. https://doi.org/10.1016/j.biortech.2010.10.026.

Agulló L. Genetics and biochemistry of biphenyl and PCB biodegradation // Rojo F. (ed.) Aerobic Utilization of Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology. Springer, 2019. P. 595–622.

Chang Y.-C. et al. Isolation of biphenyl and polychlorinated biphenyl-degrading bacteria and their degra-dation pathway // Applied Biochemistry and Biotechnology. 2013. Vol. 170. P. 381–398. https://doi.org/10.1007/s12010-013-0191-5.

Cho Y. C. et al. Enhancement of microbial PCB dechlorination by chlorobenzoates, chlorophenols and chlorobenzenes // FEMS Microbiology Ecology. 2002. Vol. 42. P. 51‒58. https://doi.org/10.1111/j.1574-6941.2002.tb00994.x.

Denef V.J. Genetic and genomic insights into the role of benzoate-catabolic pathway redundancy in Burk-holderia xenovorans LB400 // Applied and Environmental Microbiology. 2006. Vol. 72. P. 585–595. https://doi.org/10.1128/AEM.72.1.585-595.2006.

Hernandez B.S. et al. Terpene-utilizing isolates and their relevance to enhanced biotransformation of po-lychlorinated biphenyls in soil // Biodegradation. 1997. Vol. 8. P. 153–158. https://doi.org/10.1023/A:1008255218432.

Hickey W.J. et al. Cloning, nucleotide sequencing, and functional analysis of a novel, mobile cluster of biodegradation genes from Pseudomonas aeruginosa strain JB2 // Applied and Environmental Microbiology. 2001. Vol. 67. P. 4603–4609. https://doi.org/10.1128/AEM.67.10.4603-4609.2001.

Ilori M.O. et al. Aerobic mineralization of 4,4’-dichlorobiphqnyl and 4 chlorobenzoic acid by a novel natural bacterial strain that grows poorly on benzoate and biphenyl // World Journal of Microbiology and Biotechnology. 2008. Vol. 24. P. 1259–1265. https://doi.org/10.1007s11274-007-9597-y.

Jia Y. et al. Identification and characterization of a meta-cleavage product hydrolase involved in bi-phenyl degradation from Arthrobacter sp. YC-RL1 // Applied Microbiol Biotechnology. 2019. Vol. 103, № 16. P. 6825–6836. https://doi.org/10.1007/s00253-019-09956-z.

Kolar A.B. et al. PCB-degrading potential of aerobic bacteria enriched from marine sediments // International Biodeterioration and Biodegradation. 2007. Vol. 60. P. 16–24. https://doi.org/10.16/j.ibiod.2006.11.004.

Parales R.E., Resnick S.M. Aromatic Ring Hydroxylating Dioxygenases // Ramos JL., Levesque R.C. (Eds) Pseudomonas. Boston: Springer, 2006. P. 287–340. https://doi.org/10.1007/0-387-28881-3_9.

Providenti M.A., Wyndham R.C. Identification and functional characterization of CbaR, a MarR-like modulator of the cbaABC-encoded chlorobenzoate catabolism pathway // Applied and Environmental Microbiology. 2001. Vol. 67. P. 3530–3541. https://doi.org/ 10.1128/AEM.67.8.3530-3541.2001.

Radice F. et al. Cloning of the Arthrobacter sp. FG1 dehalogenase genes and construction of hybrid pathways in Pseudomonas putida strains // Applied Microbiology and Biotechnology. 2007. Vol. 75. P. 1111–1118. https://doi.org/10.1007/s00253-007-0906-z.

Shumkova E.S. et al. Draft genome sequence of Rhodococcus ruber strain P25, an active polychlorinated biphenyl degrader // Genome Announcements. 2015. Vol. 3. Article e00990-15. https://doi.org/10.1128/genomeA.00990-15.

Solyanikova I.P. et al. Peculiarities of the degradation of benzoate and its chloro- and hydroxy-substituted analogs by actinobacteria // International Biodeterioration & Biodegradation. 2015. Vol. 100. P. 155–164. https://doi.org/10.1016/j.ibiod.2015.02.028.

Stratford J. et al. Influence of chlorobenzoates on the utilisation of chlorobiphenyls and chlorobenzoate mixtures by chlorobiphenyl/chlorobenzoate-mineralising hybrid bacterial strains // Archives of Microbiology. 1996. Vol. 165. P. 213–218. https://doi.org/10.1007/BF01692864.

Tsoi T.V. et al. Cloning and expression of the Arthrobacter globiformis KZT1 fcbA gene encoding dehalogenase (4-chlorobenzoate-4-hydroxylase) in Escherichia coli // FEMS Microbiology Letters. 1991. Vol. 81. P. 165–170. https://doi.org/10.1016/0378-1097(91)90298-o.

Xu C. et al. Degradation of three monochlorobenzoate isomers by different bacteria isolated from a con-taminated soil // International Biodeterioration & Biodegradation. 2017. Vol. 120. P. 192–202. https://doi.org/10.1016/j.ibiod.2017.02.020.

Yasir M.W. et al. Biotreatment potential of co-contaminants hexavalent chromium and polychlorinated biphenyls in industrial wastewater: individual and simultaneous prospects // Science of the Total Environment. 2021. Vol. 779. Article 146345. https://doi.org/10.1016

/j.scitotenv.2021.146345.