Population and genetic features, genomic inbriding and homozy-gosity level for black-and-white and holstein breeds by STR and SNP markers in Russia

Main Article Content

Igor S. Nedashkovsky
Alexander A. Sermyagin
Olga V. Kostyunina
Valeria V. Volkova
Elena A. Gladyr
Ivan N. Yanchukov

Abstract

The object of the study was sires of the Black-and-White and Holstein breeds, which had STR profiles and passed the genotyping procedure for SNP markers. The subject of the study was the level of genomic inbreeding and homozygosity, as well as population-genetic characteristics based on them. With an increase in Fx based on pedigree data, an increase in the level of genomic inbreeding (FROH) calculated from SNP markers was also noted. The results for 9 STR markers record a wavelike increase in homozygosity from group I to group IV with a subsequent increase from group V to group VII inclusive. During the study of the average FROH values in accordance with the years of birth of sires, a significant difference was found between the last two groups (2009-2011; 2012-2014) from all the others in a pairwise comparison. The results of calculating the FROHand Ca9 of bulls from different countries of origin indicate a statistically significant differentiation of the group of animals from Russia (RF) from animals, born in German and Canadian. A significant difference was noted for the highest FROH level in the samples in the Holstein Black-and-White breed from the Red-and-White Holstein and Black-and-White breeds. The Fst values between the SNP and STR species of the animals had insignificant differentiation (0.008-0.027). Differences in STR calculation between the Black-and-White Holstein and Red-and-White Holstein breeds were insignificant, less than 20%, while the rest of the values differed many times. Fst between RF and Germany, RF and the Netherlands according to STR data is 0.006 and 0.008, according to SNP data 0.005 and 0.006, respectively. A mutual increase in the value of Fst and the year of birth of the sires was noted, emphasizing the greatest remoteness of the population of 1983-1997 from the populations of recent years, when new genotypes of bulls were obtained. The similarity of Fst values between genealogical lines is replaced by a significant scatter in the indicators when they are compared in pairs.

Article Details

How to Cite
Nedashkovsky И. С. ., Sermyagin А. А., Kostyunina О. В., Volkova В. В., Gladyr Е. А., & Yanchukov И. Н. (2021). Population and genetic features, genomic inbriding and homozy-gosity level for black-and-white and holstein breeds by STR and SNP markers in Russia. Bulletin of Perm University. Biology, (4), 295–306. https://doi.org/10.17072/1994-9952-2021-4-295-306
Section
Генетика
Author Biographies

Igor S. Nedashkovsky, L.K. Ernst Federal Research Center for Animal Husbandry

Post graduate student

Alexander A. Sermyagin, L.K. Ernst Federal Research Center for Animal Husbandry

Cand. of agriculture

Olga V. Kostyunina, L.K. Ernst Federal Research Center for Animal Husbandry

Dr. of biol., head of laboratory

Valeria V. Volkova, L.K. Ernst Federal Research Center for Animal Husbandry

Cand. of biol., senior staff

Elena A. Gladyr, L.K. Ernst Federal Research Center for Animal Husbandry

Cand. of biol., research fellow

Ivan N. Yanchukov, L.K. Ernst Federal Research Center for Animal Husbandry

Dr. of agriculture, leading research.

References

Бекетов С.В. и др. Генетическое разнообразие и филогения пуховых коз центральной и средней Азии // Генетика. 2021. № 7. С. 810–819. DOI: 10.31857/s0016675821070031

Денискова Т.Е. и др. Изучение генетического разнообразия и дифференциации региональных популяций романовских овец по микросателлитным маркерам // Аграрная наука Евро-Северо-Востока. 2018. Т. 64, № 3. С. 75–80. DOI: 10.30766/2072-9081.2018.64.3.75-80

Доклады 42 сессии FAO (Food and Agriculture Organization). Италия. Рим, 2021. С. 2021/2Rev1.

Заид А. и др. Словарь терминов по биотехнологии для производства продовольствия и ведения сельского хозяйства // Продовольственная и сельскохозяйственная организация Объединенных Наций. Рим, 2008. 381 с.

Кузнецов В.М. Инбридинг в животноводстве: методы оценки и прогноза / НИИСХ Северо-востока. Киров, 2000. 66 с.

Кузнецов В.М. F-статистики Райта: оценка и интерпретация // Проблемы биологии продуктивных животных. 2014. № 4. С. 80–109.

Кузнецов В.М. Оценка генетической дифференциации популяций молекулярным дисперсионным анализом (аналитический обзор) // Аграрная наука Евро-Северо-Востока. 2021. № 22(2). С. 167–187.

Кузнецов В.М., Валохина Н.В. Об ограничении инбридинга в малочисленных популяциях молочного скота // Сельскохозяйственная биология. 2010. № 4. С. 55–58.

Недашковский И.С. и др. Оценка племенной ценности быков-производителей голштинской породы по качеству потомства в связи с уровнем гомозиготности по STR маркерам // Вестник Рязанского госу-дарственного агротехнологического университета им. П.А. Костычева. 2019. № 3(43). С. 36–43.

Недашковский И.С. и др. Влияние уровня геномного инбридинга, оцененного по ROH-паттернам, на воспроизводительные качества и молочную продуктивность дочерей, a также спермопродукцию гол-штинских быков-производителей // Достижения науки и техники АПК. 2021. Т. 35, № 3. С. 39–45. DOI: 10.24411/0235-2451-2021-10307.

Об утверждении Доктрины продовольственной безопасности Российской Федерации: Указ Прези-дента РФ № 20 от 21 янв. 2020 г.

Сермягин А.А и др. Оценка геномной вариабельности продуктивных признаков у животных гол-штинизированной черно-пестрой породы на основе GWAS анализа и ROH паттернов // Сельскохозяйственная биология. 2020. Т. 55, № 2. С. 257–274. DOI: 10.15389/agrobiology.2020.2.257rus

Смарагдов М.Г., Кудинов А.А. Полногеномная оценка инбридинга у молочного скота // Достиже-ния науки и техники АПК. 2019. Т. 33, № 6. С. 51–53. DOI: 10.24411/0235-2451-2019-10612.

Chang C.C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets // Gi-gaScience. 2015. Vol. 4. 7 p. URL: https://doi: 10.1186/s13742-015-0047-8.

Chao A. et al. Online program SpadeR (Species-richness Prediction And Diversity Estimationin R) // 2016. 88 p. URL: https://doi:10.13140/RG.2.2.20744.62722

Curik I. et al. Inbreeding and runs of homozygosity: a possible solution to an old problem // Livest Sci. 2014. № 166. P. 26–34. URL: https://doi: 10.1016/j.livsci.2014.05.034.

Dotsev A.V. et al. PSXII-21 Genome-wide search for genomic regions under putative selection in two russian native cattle breeds using high-density SNP bead chip // J. of Animal Science. 2020. Vol. 98. № 4. P. 242–243. URL: https://doi: 10.1093/jas/skaa278.441

Ferenčaković M. et al. Estimates of autozygosity derived from runs of homozygosity: empirical evidence from selected cattle populations // J. Anim. Breed Genet. 2013. Vol. 130. P. 286–293.

Hartl D.L., Clark A.G. Principles of population. United Kingdom: Sunderland, 1997.

Hedrick P.W. A standardized genetic differentiation measure // Evolution. 2005. Vol. 59, № 8. P. 1633–1638. URL: https://doi: stable/3449070

Jost L. GST and its relatives do not measure differentiation // Mol. Ecol. 2008. Vol. 17, № 18. P. 4015–4026. URL: https://doi: 10.1111/j.1365-294X.2008.03887.x

Khrabrova L.A. et al. Assessment of line differentiation in the Thoroughbred horse breed using DNA mi-crosatellite loci // Vavilov Journal of Genetics and Breeding. 2019. Vol. 23, № 5. P. 569–574. URL: https://doi: 10.18699/VJ19.526

Kim E.S., Cole J.B., Huson H. Effect of artificial selection on runs of homozygosity in U. S. Holstein // PLoS One. 2013. Vol. 8, № 11. 80813 p.

Leutenegger A.L. et al. Estimation of the inbreeding coefficient through use of genomic data // Am. J. Hum. Genet. 2003. Vol. 73. P. 516–523.

Marras G. et al. Analysis of runs of homozygosity and their relationship with inbreeding in five cattle breeds farmed in Italy // Animal Genetics. 2015. Vol. 46, № 2. P. 110–121.

Meirmans P.G., Hedrick P.W. Assessing population structure: FST and related measures // Mol. Ecol. Res. 2011. Vol. 11, № 1. P. 5–18. URL: https://doi: 10.1111/j.1755-0998.2010.02927.x

Peakall R., Smouse P.E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and researchan update // Bioinformatics. 2012. Vol. 28. P. 2537–2539.

Purfield D.C. et al. Runs of homozygosity and population history in cattle // BMC Genet. 2012. Vol. 13. 70 p.

Wright S. Evolution and the genetics of populations. Vol.4 Variability within among natural populations. Univ. Chicago, 1978. 590 p.

Zhang L. et al. cgaTOH: Extended approach for identifying tracts of // PLoS ONE. 2013. Vol. 8(3). 57772 p. URL: https://doi:10.1371/journal.pone.0057772.