Morphological aspects of adaptation of the alkalophilic bacteria Bacillus aequororis to high salinity and alkalinity of the medium

Main Article Content

Anna V. Shilova
Grigory G. Glebov
Yuliya G. Maksimova

Abstract

AFM-images were obtained and the morphometric parameters of cells of the facultative alkalophile Bacillus aequororis 5-DB and neutrophilic Bacillus subtilis ATCC 6633 were calculated after incubation in an alkaline medium with a high concentration of sodium chloride. It was shown that adaptation of B. aequororis 5-DB is not accompanied by significant changes in morphometric parameters, while the volume of cells slightly (by 1–1.5 times) decreases and their surface roughness increases. Neutrophilic bacillus, on the contrary, reacts to an increase in salt concentration and pH (50 g/l, pH 11) by significant changes in the cell: the cell volume decreases 2–3 times, and with daily adaptation to 50 g/l salt with pH 8 increases by 2.4 times due to the increase in cell length. Cells of an alkalophilic bacillus, in contrast to those of a neutrophilic bacillus, do not undergo significant changes in morphology with a high mineralization of the environment, both under direct exposure and after daily adaptation.

Article Details

How to Cite
Shilova А. В., Glebov Г. Г., & Maksimova Ю. Г. (2021). Morphological aspects of adaptation of the alkalophilic bacteria Bacillus aequororis to high salinity and alkalinity of the medium. Bulletin of Perm University. Biology, (3), 178–184. https://doi.org/10.17072/1994-9952-2021-3-178-184
Section
Микробиология
Author Biographies

Anna V. Shilova, Institute of Ecology and Genetics of Microorganisms UB RAS

Graduate student

Grigory G. Glebov, Institute of Ecology and Genetics of Microorganisms UB RAS

Graduate student

Yuliya G. Maksimova, Institute of Ecology and Genetics of Microorganisms UB RAS

Doctor of biology, associate professor, Head of the Laboratory of Molecular Biotechnology

References

Деткова Е.Н., Пушева М.А. Энергетический метаболизм галофильных и алкалофильных ацетогенных бактерий // Микробиология. 2006. Т. 75, № 1. С. 5–17.

Коршунова И.О. и др. Влияние органических растворителей на жизнеспособность и морфофункциональные свойства родококков // Прикладная биохимия и микробиология. 2016. Т. 52, № 1. С. 53–61.

Максимова А.В., Кузнецова М.В., Демаков В.А. Влияние синтетических нитрилов на морфологию и жизнеспособность некоторых видов бактерий // Известия РАН. Сер. биол. 2016. № 6. С. 631–637.

Морозкина Е.В. и др. Экстремофильные микроорганизмы: биохимическая адаптация и биотехнологическое применение (обзор) // Приклад-ная биохимия и микробиология. 2010. Т. 46, № 1. С. 5–20.

Шилова А.В., Максимов А.Ю., Максимова Ю.Г. Выделение и идентификация алкалотолерантных бактерий с гидролитической активностью из содового шламохранилища // Микробиоло-гия. 2021. Т. 90, № 2. С. 155–165.

Beech I.B. et al. The use of atomic force microscopy for studying interactions of bacterial biofilms with surfaces // Colloids and Surfaces B: Biointerfaces. 2002. Vol. 23. P. 231–247.

Borkar S. Alkaliphilic Bacteria: Diversity, Physiology and Industrial Applications, Chapter 4 // Bioprospects of Coastal Eubacteria. Switzerland: Springer International Publishing, 2015. P. 59–83.

Bremer E. Adaptation to Changing Osmolanty // Ba-cillus subtilis and Its Closest Relatives. Eds. A. Sonenshein, R. Losick, J. Hoch. Washington, ASM Press, 2002. P. 385–391.

Dhakar K., Pandey A. Wide pH range tolerance in extremophiles: towards understanding an important phenomenon for future biotechnology // Applied Microbiology and Biotechnology. 2016. Vol. 100. P. 2499–2510.

Dorobantu L.S., Goss G.G., Burrell R.E. Atomic force microscopy: A nanoscopic view of microbial cell surfaces // Micron. 2012. Vol. 43. P. 1312–1322.

Glebov G. et al. Combined CLSM/AFM study of rhodococcus cell interactions with zinc oxide nanoparticles // Высокие технологии, определяющие качество жизни: материалы II Междунар. науч. конф. Пермь, 2018. С. 30–31.

Krulwich T.A., Sachs G., Padan E. Molecular aspects of bacterial pH sensing and homeostasis // Nature Reviews Microbiology. 2011. Vol. 9. P. 330–343.

Oren A. Microbial life at high salt concentrations: phylogenetic and metabolic diversity // Saline Sys-tems. 2008. 4 : 2. DOI: 10.1186/1746-1448-4-2

Stukalov O. Use of atomic force microscopy and transmission electron microscopy for correlative studies of bacterial capsules // Appl. and Environ. Microbiol. 2008. Vol. 74, № 17. P. 5457–5465.

Yu M., Ivanisevic A. Encapsulated cells: an atomic force microscopy study // Biomaterials. 2004. Vol. 25. P. 3655–3662.

Zolock R.A. et al. Atomic force microscopy of Bacillus spore surface morphology // Micron. 2006. Vol. 37. P. 363–369.