The technique of optical-electrochemical microbiological testing as applied to the comparative analysis of the prebiotic and antimicrobial properties of various plant extracts

Main Article Content

Vladimir Sibirtsev
Ulyana Nechiporenko

Abstract

A biotesting technique is described that provides for periodic (every 2 h) recording of changes in the intensity of elastic light scattering, pH and electrical conductivity of a liquid nutrient medium incubated in the presence and absence of viable test microorganisms and test samples. The results of a comparative analysis using this technique of antibiotic activity against Staphylococcus aureus of different concentrations of whole subcritical extracts obtained using liquefied CO2 from 10 different types of plant raw materials are presented. Studies have shown that among the samples studied by us, the most active prolonged antimicrobial properties were exhibited by extracts from the roots of Chelidonium majus and flowers of Calendula officinalis at their concentration in the test medium (CTE) more than 3 vol.%. And the most active prolonged prebiotic properties were exhibited by extracts from shoots of Viscum album and leaves of Juglans regia at CTE = 0.2 vol.%. In this case, the biological activity of the tested samples with respect to test microorganisms in most cases monotonically decreased with an increase in the interaction time of the mentioned microorganisms and samples. However, the exact nature of these dependencies in most cases can be established only with the help of a significant number of tests. And the latter can be conveniently carried out using the methodology presented in this work, which allows a much more rapid, objective and informative, as well as much less laborious and material-intensive, than when using standard visual microbiological methods, to assess the effect on the dynamics of the vital activity of microorganisms of various tested samples.

Article Details

How to Cite
Sibirtsev В. С., & Nechiporenko У. Ю. (2021). The technique of optical-electrochemical microbiological testing as applied to the comparative analysis of the prebiotic and antimicrobial properties of various plant extracts. Bulletin of Perm University. Biology, (1), 26–38. https://doi.org/10.17072/1994-9952-2021-1-26-38
Section
Микробиология
Author Biographies

Vladimir Sibirtsev , Saint Petersburg State Chemical and Pharmaceutical University

Candidate of chemistry, associate professor

Ulyana Nechiporenko , Saint Petersburg State Chemical and Pharmaceutical University

Junior researcher

References

Смирнова И.Р., Дудник Т.Л., Сивченко С.В. Контроль качества сырья и готовой продукции на предприятиях индустрии питания. М.: Логос, 2014. 151 с.

Alok S. et al. Herbal antioxidant in clinical practice: a review // Asian Pacific Journal of Tropical Biomedicine. 2014. Vol. 4, № 1. P. 78–84.

Al-Zubairi A., Al-Mamary M.A., Al-Ghasani E. The antibacterial, antifungal and antioxidant activities of essential oil from different aromatic plants // Global Advanced Research Journal of Medicine and Medical Sciences. 2017. Vol. 6, № 9. Р. 224–233. http://garj.org/garjmms

Atarés L., Chiralt A. Essential oils as additives in biodegradable films and coatings for active food packaging // Trends in Food Science & Technology. 2016. Vol. 48. P. 51–62. https://doi.org/10.1016/j.tifs.2015.12.001

Bakkali F. et al. Biological effects of essential oils – a review // Food and chemical toxicology. 2008. Vol. 46, № 2. Р. 446–475. https://doi.org/ 10.1016/j.fct.2007.09.106

Burt S. Essential oils: their antibacterial properties and potential applications in foods – a review // International journal of food microbiology. 2004. Vol. 94, № 3. P. 223–253. https://doi.org/10.1016/ j.ijfoodmicro.2004.03.022

Coelho J. et al. Supercritical CO2 extracts and volatile oil of basil (Ocimum basilicum L.) comparison with conventional methods // Separations. 2018. Vol. 5, № 2. Р. 21–33. https://doi.org/10.3390/ separations5020021

Das S., Anjeza C., Mandal S. Synergistic or additive antimicrobial activities of Indian spice and herbal extracts against pathogenic, probiotic and food–spoiler microorganisms // International Food Research Journal. 2012. Vol. 19, № 3. Р. 1185–1191.

Donsì F., Ferrari G. Essential oil nanoemulsions as antimicrobial agents in food // Journal of Biotechnology. 2016. Vol. 233. P. 106–120. https://doi.org/10.1016/j.jbiotec.2016.07.005

Fani M., Kohanteb J. In vitro antimicrobial activity of thymus vulgaris essential oil against major oral pathogens // Journal of Evidence-Based Complementary & Alternative Medicine. 2017. Vol. 22, № 4. Р. 660–666. https://doi.org/ 10.1177/2156587217700772

Fatima A. et al. Benefits of herbal extracts in cosmetics: a review // International Journal of Pharmaceutical Sciences and Research. 2013. Vol. 4, № 10. Р. 3746–3760. https://doi.org/10.13040/ ijpsr.0975-8232.4(10).3746-60

Ibadullaeva G.S. et al. Chemical composition of the CO2-extract of Acorus Calamus obtained under subcritical conditions // Pharmaceutical Chemistry Journal. 2015. Vol. 49, № 6. Р. 388–392.

Johnson K., Jeffi V. Numerical Methods in Chemistry. New York: Cambridge University Press, 1983.

Ju J. et al. Application of edible coating with essential oil in food preservation // Critical Reviews in Food Science and Nutrition. 2019. Vol. 59, № 15. P. 2467–2480. https://doi.org/10.1080/ 10408398.2018.1456402

Lazarotto M. et al. Chemical composition and antibacterial activity of bergamot peel oil from supercritical CO2 and compressed propane extraction // Open Food Science Journal. 2018. Vol. 10, № 1. Р. 16–23. https://doi.org/10.2174/ 1874256401810010016

Luzhnova S.A. et al. Synthesis and antimicrobial activity of 5-(arylmethylidene)-2,4,6-pyrimidine-2,4,6(1H,3H,5H)-triones // Pharmaceutical Chemistry Journal. 2018. Vol. 52, № 6. P. 506–509.

Kokina M.S. et al. Influence of pleurotus ostreatus beta-glucans on the growth and activity of certain lactic acid bacteria // Scientific Study and Research: Chemistry and Chemical Engineering, Biotechnology, Food Industry. 2018. Vol. 19, № 4. Р. 465–471.

Korn G., Korn T. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems and Formulas for Reference and Review. McGraw Hill Book Company, 1968.

Merghni A. et al. Antibacterial and antibiofilm activities of Laurus nobilis L. essential oil against Staphylococcus aureus strains associated with oral infections // Current Research in Translational Medicine. 2016. Vol. 64, № 1. Р. 29–34. https://doi.org/10.1016/j.patbio.2015.10.003

Pavela R., Benelli G. Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints // Trends in Plant Science. 2016. Vol. 21, № 12. Р. 1000–1007. https://doi.org/10.1016/j.tplants. 2016.10.005

Radice M. et al. Herbal extracts, lichens and biomolecules as natural photo-protection alternatives to synthetic UV filters. A systematic review // Fitoterapia. 2016. Vol. 114. Р. 144–162. https://doi.org/10.1016/j.fitote.2016.09.003

Ribeiro-Santos R. et al. Use of essential oils in active food packaging: Recent advances and future trends // Trends in Food Science & Technology. 2017. Vol. 61. P. 132–140. https://doi.org/10.1016/ j.tifs.2016.11.021

Rodino S., Butu M. Functional and Medicinal Beverages. Academic Press. 2019. Vol. 11: The Science of Beverages. P. 73–108. https://doi.org/ 10.1016/B978-0-12-816397-9.00003-0

Routa P.K., Naika S.N., Raob Y.R. Subcritical CO2 extraction of floral fragrance from Quisqualis indica // Journal of Supercritical Fluids. 2008. Vol. 45, № 2. P. 200–205. https://doi.org/10.1016/j.supflu.2008.02.011

SahenaaI F. et al. Application of supercritical CO2 in lipid extraction – a review // Journal of Food Engineering. 2009. Vol. 95, № 2. P. 240–253. https://doi.org/10.1016/j.jfoodeng.2009.06.026

Sibirtsev V.S., Garabagiu A.V., Ivanov S.D. Mechanisms of interactions of some phenylbenzoimidazole and phenylindole dyes with DNA // Bioorganicheskaia Khimiia. 1994. Vol. 20, № 6. P. 650–668.

Sibirtsev V.S., Garabadzhiu A.V., Ivanov S.D. Me-chanisms of variation in fluorescent properties of bis-benzimidazole dyes // Bioorganicheskaya Khi-miya. 1995. Vol. 21, № 9. С. 731–736.

Sibirtsev V.S., Glibin E.N., Ivanov S.D. Variation of spectral properties of actinocin derivatives due to equilibrium transformations // Russian Journal of Organic Chemistry. 2000. Vol. 36, №.12. P. 1812–1818.

Sibirtsev V.S. Analysis of benzo[a]pyrene deactivation mechanisms in rats // Biochemistry (Moscow). 2006. Vol. 71, №. 1. P. 90–98. https://doi.org/ 10.1134/S0006297906010147

Sibirtsev V.S. Fluorescent DNA probes: study of me-chanisms of changes in spectral properties and features of practical application // Biochemistry (Moscow). 2007. Vol. 72, № 8. P. 887–900. https://doi.org/10.1134/S0006297907080111

Sibirtsev V.S., Garabadzhiu A.V. Spectral study of the interaction of DNA with benzothiazolyl-benz-a-chromene // Biochemistry (Moscow). 2007. Vol. 72, № 8. P. 901–909. https://doi.org/10.1134/ S0006297907080123

Sibirtsev V.S., Kulakov A.Ju., Stroev S.A. Conductometry biotesting as applied to valuation of the pro- and antibacterial properties of catolites and anolites // Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2016. Vol. 16, № 3. P. 573–576. https://doi.org/10.17586/2226-1494-2016-16-3-573-576

Sibirtsev V.S., Olekhnovich R.О., Samuylova E.О. As-sessment of integral toxicity of water resources by instrumental methods of analysis // International Multidisciplinary Scientific GeoConference Sur-veying Geology and Mining Ecology Management (SGEM) Conference Proceedings. 2017, Vol. 17, № 61. P. 507–514. https://doi.org/ 10.5593/sgem2017/61/S25.066

Sibirtsev V.S. Biological test methods based on fluo-rometric genome analysis // Journal of Optical Technology. 2017. Vol. 84, № 11. P. 787–791. https://doi.org/10.1364/JOT.84.000787

Sibirtsev V.S., Maslova A.Yu. Complex research of E.coli vital activity dynamics in presence of transi-tion metal ions // Scientific and Technical Journal of Information Technologies, Mechanics and Op-tics, 2019. Vol. 19, № 2. P. 236–241. https://doi.org/10.17586/2226-1494-2019-19-2-236-241

Sibirtsev V.S. et al. An integrated method of instrumental microbiotesting of environmental safety of various products, wastes, and territories // Doklady Biological Sciences. 2019. Vol. 485, № 1. Р. 59–61. https://doi.org/10.1134/S001249661902011X

Sibirtsev V.S., Garabadgiu A.V., Shvets V.I. Fluorescent DNA probes: study of properties and methods of application // Doklady Biochemistry and Biophys-ics. 2019. Vol. 489, № 5. Р. 403–406. https://doi.org/10.1134/S1607672919060127

Sutherland J. et al. Invitroeffects of food extracts on selected probiotic and pathogenic bacteria // Inter-national Journal of Food Sciences and Nutrition. 2009. Vol. 60, № 8. Р. 717–727. https://doi.org/ 10.3109/09637480802165650

Tripathi A.K. et al. Herbal antidiabetics: a review // International Journal of Research in Pharmaceuti-cal Sciences. 2011. Vol. 2, № 1. Р. 30–37.

Valle Jr.D.L. et al. Antimicrobial activities of metha-nol, ethanol and supercritical CO2 extracts of Phi-lippine Piper betle L. on clinical isolates of Gram positive and Gram negative bacteria with transferable multiple drug resistance // PLOS ONE. 2016. Vol. 11, № 1. https://doi.org/ 10.1371/journal.pone.0146349

Vieitez I. et al. Antioxidant and antibacterial activity of different extracts from herbs obtained by maceration or supercritical technology // Journal of Supercritical Fluids. 2018. Vol. 133. Р. 58–64. https://doi.org/10.1016/j.supflu.2017.09.025

Yuan G., Chen X., Li D. Chitosan films and coatings containing essential oils: The antioxidant and an-timicrobial activity, and application in food sys-tems // Food Research International. 2016. Vol. 89. P. 117–128. https://doi.org/10.1016/ j.foodres.2016.10.004

Zhuravlev O.E., Voronchikhina L.I. Synthesis and an-timicrobial activity of n-decylpyridinium salts with inorganic anions // Pharmaceutical Chemistry Journal. 2018. Vol. 52, № 4. P. 312–315.