ДИСПЕРСИЯ МОНО- И СМЕШАННЫХ БИОПЛЕНОК ALCALIGENES FAECALIS 2 И RHODOCOCCUS RUBER GT 1
Main Article Content
Abstract
Article Details
References
Зорина А.С., Максимова Ю.Г., Демаков В.А. Биопленкообразование моно- и смешанных куль-тур штаммов Alcaligenes faecalis 2 и Rhodococ-cus ruber gt 1 // Микробиология. 2019. Т. 88, № 2. С. 175–183.
Максимова Ю.Г., Максимов А.Ю., Демаков В.А. Биопленки нитрилгидролизующих бактерий: динамика роста, устойчивость к токсичным веществам и биотехнологический потенциал // Биотехнология. 2015. № 4. С. 39–51.
Максимова Ю.Г. Микробные биопленки в биотехнологических процессах // Биотехнология. 2013. № 4. С. 9–23.
Burmølle M. et al. Interactions in multispecies bio-films: do they actually matter // Trends in Microbi-ology. 2014. Vol. 22, № 2. P. 84–91.
Carrel M. et al. Biofilms in 3D porous media: Deli-neating the influence of the pore network geometry, flow and mass transfer on biofilm development // Water Research. 2018. Vol. 134. P. 280–291.
Chen D., Zhao T., Doyle M.P. Single- and mixed-species biofilm formation by Escherichia coli O157:H7 and Salmonella, and their sensitivity to levulinic acid plus sodium dodecyl sulfate // Food Control. 2015. Vol. 57. P. 48–53.
Chen J. et al. Microbial transformation of nitriles to high-value acids or amides // Advances in Bio-chemical Engineering / Biotechnology. 2009. Vol. 113. P. 33–77.
Derlon N. et al. Growth limiting conditions and deni-trification govern extent and frequency of volume detachment of biofilms // Chemical Engineering Journal. 2013. Vol. 218. P. 368–375.
Desmond P. et al. Stratification in the physical struc-ture and cohesion of membrane biofilms — Impli-cations for hydraulic resistance //Journal of Mem-brane Science. 2018. Vol. 564. P. 897–904.
Dufour D., Leung V., Levesque C.M. Bacterial biofilm: structure, function, and antimicrobial resistance // Endodontic Topics. 2012. Vol. 22. P. 2–16.
Ju X. et al. Effect of the luxS gene on biofilm forma-tion and antibiotic resistance by Salmonella sero-var Dublin // Food Research International. 2018. Vol. 107. P. 385–393.
Marić S., Vraneš J. Characteristics and significance of microbial biofilm formation // Periodicum Biologorum. 2007. Vol. 109, № 2. P. 1–7.
Omar A. et al. Microbial biofilms and chronic wounds // Microorganisms. 2017. Vol. 5. P. 1–15.
Paul E.et al. Effect of shear stress and growth conditions on detachment and physical properties of biofilms // Water Research. 2012. Vol. 46. P. 5499–5508.
Petrova O.E., Sauer K. Escaping the biofilm in more than one way: desorption, detachment or dispersion // Current Opinion in Microbiology. 2016. Vol. 30. P. 67–78.
Rittmann B.E. Biofilms, active substrata, and me // Water Research. 2018. Vol. 132. P. 135–145.
Røder H.L. et al. Interspecies interactions result in en-hanced biofilm formation by co-cultures of bacteria isolated from a food processing environment // Food Microbiology. 2015. Vol. 51. P. 18–24.
Solano C., Echeverz M., Lasa I. Biofilm dispersion and quorum sensing // Current Opinion in Micro-biology. 2014. Vol. 18. P. 96–104.
Thornhill S.G., Kumar M. Biological filters and their use in potable water filtration systems in space-flight conditions // Life Sciences in Space Re-search. 2018. Vol. 17. P. 40–43.
Walter M. et al. Detachment characteristics of a mixed culture biofilm using particle size analysis // Chemical Engineering Journal. 2013. Vol. 228. P. 1140–1147.