REDUCING STAPHYLOCOCCUS EPIDERMIDIS COLONIZATION OF POLYDIMETHYLSILOXANE

Main Article Content

Тамара/Tamara Исаковна/Isakovna Карпунина/Karpunina
Дина/Dina Эдуардовна/Eduardovna Якушева/Yakusheva
Дмитрий/Dmitry Михайлович/Mikhailovich Кисельков/Kisel'kov
Ирина/Irina Алексеевна/Alekseevna Борисова/Borisova
Равиль/Ravil' Максумзянович/Maksumzyanovich Якушев/Yakushev

Abstract

Modification of polydimethylsiloxane (PDMS) surface by a combined physical and chemical method has been carried out. The method consists in ion-beam treatment followed by grafting of acrylic acid and interaction with chemicals. As a result, amino groups and coordination compounds of the zinc(II) ion have been assumed to appear on the polymer surface. The biofilms of Staphylococcus epidermidis clinical strains adhered to the initial and modified surfaces has been studied by scanning electron microscopy. In this paper microbial contamination of surface modified silicone rubber was shown to be significantly reduced. This modification technique can be suggested for antibacterial treatment of medical devices made of silicon rubber.

Article Details

How to Cite
Карпунина/Karpunina Т. И., Якушева/Yakusheva Д. Э., Кисельков/Kisel’kov Д. М., Борисова/Borisova И. А., & Якушев/Yakushev Р. М. (2018). REDUCING STAPHYLOCOCCUS EPIDERMIDIS COLONIZATION OF POLYDIMETHYLSILOXANE. Bulletin of Perm University. Biology, (2), 160–165. Retrieved from https://press.psu.ru/index.php/bio/article/view/1803
Section
Микробиология
Author Biographies

Тамара/Tamara Исаковна/Isakovna Карпунина/Karpunina, Perm State Medical Academy after E.A. Vagner

Doctor of Biology, professor, Department of microbiology and virology with clinical laboratory diagnostics course

Дина/Dina Эдуардовна/Eduardovna Якушева/Yakusheva, Institute of Technical chemistry, UB RAS

PhD in Engineering sciences, researcher, laboratory of structural chemical modification of polymers

Дмитрий/Dmitry Михайлович/Mikhailovich Кисельков/Kisel'kov, Institute of Technical chemistry, UB RAS

PhD in Engineering sciences, researcher, laboratory of structural chemical modification of polymers

Ирина/Irina Алексеевна/Alekseevna Борисова/Borisova, Institute of Technical chemistry, UB RAS

Engineer, laboratory of structural chemical modification of polymers

Равиль/Ravil' Максумзянович/Maksumzyanovich Якушев/Yakushev, Institute of Technical chemistry, UB RAS

PhD in Engineering sciences, Head of laboratory of structural chemical modification of polymers

References

Божкова СЛ. и др. Способность к формированию биопленок у клинических штаммов S. aureus и S. epidermidis — ведущих возбудителей ортопедической имплант-ассоциированной инфекции // Клин, микробиол. антимикроб, химиотер. 2014. Т. 16, №2. С. 149-156.

Busscher H.J. et al. Biomaterial-associated infection: locating the finish line in the race for the surface // Science Translational Medicine. 2012. Vol. 4. P. 153rvl0.

Chu P.K. et al. Plasma-surface modification of bioma-terials // Material Science Engineering: R: reports. 2002. Vol. 36, is.5-6. P 143-206.

Donlan R.M. Biofilms and device-associated infections // Emerging. Infectious Diseases. 2001. Vol. 7, is. 2. P. 277-281.

Ektessabi A.M., Sano T. Sputtering and thermal effect during ion microbeam patterning of polymeric films // Review of Scientific Instruments. 2000. Vol. 71, is. 2. P. 1012-1015.

Jiang X., Pace J.L. Microbial Biofilms // Biofilms, Infection and Antimicrobial Therapy; Pace J.L., Rupp M.,Finch R.G., eds. Taylor & Francis Group: Boca Raton,FL, USA. 2006. P. 3-19.

Katsikogianni M., Missirlis Y.F. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions // European Cells and Materials. 2004. Vol. 8. P. 37-57.

Kondyurin A., BilekM. Ion Beam Treatment of Polymers: Application Aspects from Medicine to Space. Elsevier, 2015. P. 185-215.

Mekewi M. et al. Imparting permanent antimicrobial activity onto viscose and acrylic fibers // International Journal of Biological Macromole-cules. 2012.Vol. 50. P. 1055-1062.

Otto M. Staphylococcal biofilms // Current Topics in Microbiology and Immunology. 2008. Vol. 322. P. 207-208.

Padmavathy N., Vijayaraghavan R. Enhanced bioac-tivity of ZnO nanoparticles—an antimicrobial study // Science and Technology of Advanced Materials. 2008. Vol. 9. P. 035004(l)-035004(7).

Pasqueta J. et al. The contribution of zinc ions to the antimicrobial activity of zinc oxide // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2014. Vol. 457. P. 263-274.

Pavlukhina S., Sukhishvili S. Polymer assemblies for controlled delivery of bioactive molecules from surfaces // Advanced Drug Delivery Reviews. 2011. Vol. 63. P. 822-836.

Zhang L. et al. Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli II Journal Nanoparti-cle Research. 2010. Vol. 12. P. 1625-1636.

References

Bozhkova S. A. et. al. [Ability to formation of biofilms of S. aureus u S. epidermidis clinical strains - the main causative agents of implant-associated infections] Klinicheskaya microbi-ologiya i antimicrobnaya khimioterapiya. 2014. V. 16. Is. 2. P. 149-156. (In Russ.)

Busscher H. .J., et al. Biomaterial-associated infection: locating the finish line in the race for the surface. Science Translational Medicine. 2012, V. 4, pp. 153rvl0.

Chu, P.K. et al. Plasma-surface modification of biomaterials. Material Science Engineering: R: reports. 2002, V 36, Is. 5-6, pp. 143-206.

Donlan R.M., Biofilms and device-associated infections. Emerging. Infectious Diseases. 2001, Is. 2, V. 7, pp. 277-281.

Ektessabi A.M., Sano T. Sputtering and thermal effect during ion microbeam patterning of polymeric films. Review of Scientific Instruments. 2000, V. 71, Is. 2, pp. 1012-1015.

Jiang X., Pace J.L. Microbial Biofilms. Biofilms, Infection and Antimicrobial Therapy; Pace J.L., Rupp M.,Finch R.G., eds. Taylor & Francis Group: Boca Raton,FL, USA. 2006, pp. 3-19.

Katsikogianni M., Missirlis Y.F. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. European Cells and Materials. 2004, V. 8. pp. 37-57.

Kondyurin A., Bilek M. Ion Beam Treatment of Polymers: Application Aspects from Medicine to Space. Elsevier, 2015, pp. 185-215.

Mekewi M. et al. Imparting permanent antimicrobial activity onto viscose and acrylic fibers. International Journal of Biological Macromole-cules. 2012,V. 50, pp. 1055-1062.

Otto M. Staphylococcal biofilms. Current Topics in Microbiology and Immunology. 2008, V. 322, pp. 207-208.

Padmavathy N., Vijayaraghavan R. Enhanced bioac-tivity of ZnO nanoparticles—an antimicrobial study. Science and Technology of Advanced Materials. 2008, V. 9, pp. 035004(l)-035004(7).

Pasqueta J. et al. The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2014, V. 457, pp. 263-274.

Pavlukhina S, Sukhishvili S. Polymer assemblies for controlled delivery of bioactive molecules from surfaces. Advanced Drug Delivery Reviews. 2011, V. 63, pp. 822-836.

Zhang L. et al. Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. Journal Nanoparti-cle Research. 2010, V. 12, pp. 1625-1636.