POLYAMINES INCREASE ESCHERICHIA COLI TOLERANCE TO NETILMICIN

Main Article Content

Наталья/Natalya Михайловна/Mikhailovna Кашеварова/Kashevarova
Александр/Alexander Георгиевич/Georgievich Ткаченко/Tkachenko

Abstract

Polyamine effect on E. coli tolerance to aminoglycoside netilmicin was studied. In batch cultures of E. coli polyamine-proficient strains the number of persister cells tolerant to netilmicin was increased with increasing the cell density upon transition from exponential growth to stationary phase. In the control un-supplemented culture of polyamine-deficient E. coli strain the number of persister cells fluctuated over the same range throughout the cultivation. However, polyamine supplementation resulted in a concentration-dependent increase in the number of tolerant cells as the culture entered the stationary phase. Efficiency of polyamine action decreased in the following order: spermidine - putrescine - cadaverine. The threshold concentration of netilmicin leading to killing of all cells was determined as 1.0 ng/ml. The cultures treated with lower concentrations of the antibiotic displayed biphasic time-killing curves when sensitive cells were killed and subpopulations of tolerant cells survived after 5 hour exposure to netilmicin. When cells were treated by various concentrations of netilmicin, putrescine supplementation produced either full elimination of negative drug effect or 10-50-fold decrease in the number of viable cells depending on aminoglycoside concentration. Putrescine effect we have shown to be maximal when it was added to cells before the drug challenge.

Article Details

How to Cite
Кашеварова/Kashevarova Н. М., & Ткаченко/Tkachenko А. Г. (2018). POLYAMINES INCREASE ESCHERICHIA COLI TOLERANCE TO NETILMICIN. Bulletin of Perm University. Biology, (4), 330–337. Retrieved from https://press.psu.ru/index.php/bio/article/view/1769
Section
Микробиология
Author Biographies

Наталья/Natalya Михайловна/Mikhailovna Кашеварова/Kashevarova, Institute of Ecology and Genetics of Microorganisms UB RAS

Reseach scientist of the laboratory of microorganisms adaptation

Александр/Alexander Георгиевич/Georgievich Ткаченко/Tkachenko, Perm State University

Professor, Department of Microbiology and immunology

References

Allison К., Brynildsen М., Collins J. Heterogeneous bacterial persisters and engineering approaches to eliminate them // Current Opinion in Microbiology. 2011. Vol. 14. P. 593-598.

Amato S. et al. The role of metabolism in bacterial persistence // Frontiers in Microbiology / Microbial Physiology and Metabolism. 2014. Vol. 5. Art. 70.

Datsenko K., Wanner B. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products // Proceedings of the National Academy of Sciences of the USA. 2000. Vol. 97, № 13. P. 6640-6645.

Dorr T., Vulic M., Lewis K. Ciprofloxacin Causes Persister Formation by Inducing the TisB toxin in Escherichia coli //PLoS Biology. 2010. Vol. 8, № 2. el000317.

Igarashi K., Kashiwagi K. Polyamine Modulon in Escherichia coli: genes involved in the stimulation of cell growth by polyamines // Journal of Biochemistry. 2006. Vol. 139. P. 11-16.

Jana S., Deb J. Molecular understanding of aminoglycoside action and resistance // Applied Microbiology and Biotechnology. 2006. Vol. 70. P. 140-150.

Gefen O., Balaban N. The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress // FEMS Microbiology Reviews. 2009. Vol. 33. P. 704-717.

Keren I. et al. Persister cells and tolerance to antimicrobials // FEMS Microbiology Letters. 2004. Vol. 230. P. 13-18.

Kohanski M. et al. A common mechanism of cellular death induced by bactericidal antibiotics // Cell. 2007. Vol. 130, № 5. P. 797-810.

Lewis K. Persister cells, dormancy and infectious disease // Nature Reviews Microbiology. 2007. Vol. 5. P. 48-56.

Lewis K. Persister cells // Annual Review of Microbiology. 2010. Vol. 64. P. 357-372.

Shakil S. et al. Aminoglycosides versus bacteria - a description of the action, resistance mechanism, and nosocomial battleground // Journal of Biomedical Science. 2008. Vol. 15. P. 5-14.

Tabor C., Tabor H. Polyamines in microorganisms // Microbiological reviews. 1985. Vol. 49. P. 81-99.

Tkachenko A. et al. Polyamines reduce oxidative stress in Escherichia coli cells exposed to bactericidal antibiotics // Research in Microbiology. 2012. Vol. 163, №2. P. 83-91.

Tkachenko A. et al. Putrescine controls the formation of Escherichia coli persister cells tolerant to aminoglycoside netilmicin // FEMS Microbiology Letters. 2014. Vol. 361. P. 25-33.

_______________________________________________________

Allison K., Brynildsen M., Collins J. Heterogeneous bacterial persisters and engineering approaches to eliminate them. Current Opinion in Microbiology. V. 14 (2011): pp. 593-598.

Amato S., Fazen C., Henry T., Mok W., Orman M., Sandvik E., Volzing K., Brynildsen M. The role of metabolism in bacterial persistence. Frontiers in Microbiology/ Microbial Physiology and Metabolism. V. 5 (2014): Art. 70.

Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the USA. V. 97, № 13 (2000): pp. 6640-6645.

Dorr T, Vulic M, Lewis K. Ciprofloxacin Causes Persister Formation by Inducing the TisB toxin in Escherichia coli. PLoS Biology. V. 8, № 2 (2010): el000317.

Igarashi K., Kashiwagi K. Polyamine Modulon in Escherichia coli: genes involved in the stimulation of cell growth by polyamines. Journal of Biochemistry. V. 139 (2006): pp. 11-16.

Jana S., Deb J. Molecular understanding of aminoglycoside action and resistance. Applied Microbiology and Biotechnology. V. 70 (2006): pp. 140-150.

Gefen O., Balaban N. The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress. FEMS Microbiology Reviews. V. 33 (2009): pp. 704-717.

Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K. Persister cells and tolerance to antimicrobials. FEMS Microbiology Letters. V. 230 (2004): pp. 13-18.

Kohanski M.A., Dwyer D.J., Hayete В., Lawrence C.A., Collins J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. V. 130, № 5 (2007): pp. 797-810.

Lewis K. Persister cells, dormancy and infectious disease. Nature Reviews Microbiology. V. 5 (2007): pp. 48-56.

Lewis K. Persister cells. Annual Review of Microbiology. V. 64 (2010): pp. 357-372.

Shakil S., Khan R., Zarrilli R., Khan A.U. Aminoglycosides versus bacteria - a description of the action, resistance mechanism, and nosocomial battleground. Journal of Biomedical Science. V. 15 (2008): pp. 5-14.

Tabor C., Tabor H. Polyamines in microorganisms. Microbiological reviews. V. 49 (1985): pp. 81-99.

Tkachenko A., Akhova A., Shumkov M., Nesterova L. Polyamines reduce oxidative stress in Escherichia coli cells exposed to bactericidal antibiotics. Research in Microbiology. V. 163, № 2 (2012): pp. 83-91.

Tkachenko A., Kashevarova N., Karavaeva E., Shumkov M. Putrescine controls the formation of Escherichia coli persister cells tolerant to aminoglycoside netilmicin. FEMS Microbiology Letters. V. 361 (2014): pp. 25-33.

Most read articles by the same author(s)