MODIFYING EFFECT OF GRAPE SKIN AND RED WINE EXTRACTS ON ESCHERICHIA COLI SUSCEPTIBILITY TO VARIOUS ANTIBIOTICS

Main Article Content

Ксения/Kseniya Викторовна/Viktorovna Безматерных/Bezmaternykh
Галина/Galina Васильевна/Vasil'evna Смирнова/Smirnova
Олег/Oleg Николаевич/Nikolaevich Октябрьский/Oktyabrsky

Abstract

Extracts from red wine and grape skin contain a significant amount of polyphenols, including quercetin and resveratrol, and possess high antiradical and chelating ability. Addition of these extracts into E. coli culture causes a 30% inhibition of the growth rate, an induction of antioxidant genes katG and sodA and a rise in H2O2 resistance. Pretreatment of E. coli with the extracts attenuates bactericidal activity of ciprofloxacin and cefotaxim and, in contrast, augments E. coli susceptibility to kanamycin and streptomycin. The extracts may exert their action by influence on the growth rate, redox state of cells and expression of antioxidant genes. In the case of ciprofloxacin, pretreatment with the extracts can decrease DNA damage and the level of the SOS response. The modulating effect of extracts should be taken into consideration in antibiotic therapy.

Article Details

How to Cite
Безматерных/Bezmaternykh К. В., Смирнова/Smirnova Г. В., & Октябрьский/Oktyabrsky О. Н. (2018). MODIFYING EFFECT OF GRAPE SKIN AND RED WINE EXTRACTS ON ESCHERICHIA COLI SUSCEPTIBILITY TO VARIOUS ANTIBIOTICS. Bulletin of Perm University. Biology, (4), 322–329. Retrieved from https://press.psu.ru/index.php/bio/article/view/1768
Section
Микробиология
Author Biographies

Ксения/Kseniya Викторовна/Viktorovna Безматерных/Bezmaternykh, Institute of Ecology and Genetics of Microorganism UB RAS

Engineer of laboratory of physiology and genetics of microorganisms

Галина/Galina Васильевна/Vasil'evna Смирнова/Smirnova, Institute of Ecology and Genetics of Microorganism UB RAS

Doctor of biology, leading researcher of laboratory of physiology and genetics of microorganisms

Олег/Oleg Николаевич/Nikolaevich Октябрьский/Oktyabrsky, Institute of Ecology and Genetics of Microorganism UB RAS; Perm National Research Polytechnic University

Professor, director of laboratory of physiology and genetics of microorganisms;Professor of the Department of Chemistry and Biotechnology

References

Смирнова Г.B. и др. Роль тиоловых редокс-систем при ответе бактерий Escherichia coli на стрессорные воздействия температур и антибиотиков //Микробиология. 2016. Т. 85(1). С. 1-11.

Belenky P. et al. Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage // Cell Rep. 2015. Vol. 13. P. 968-980.

Crozier A., Jaganath I.B., Clifford M.N. Dietary phe-nolics: chemistry, bioavailability and effects on health // Nat. Prod. Rep. 2009. Vol. 26. P. 1001-1043.

Cushnie T.P.T., Lamb A.J. Antimicrobial activity of flavonoids // Int. J. Antimicrob. Agents 2005. Vol. 26. P. 343-356.

Drlica K. et al. Quinolone-mediated bacterial death // Antimicrob. Agents Chemother. 2008. Vol. 52. P. 385-392.

Eberhardt M.V., Jeffery E.H. Perspective. When dietary antioxidants perturb the thiol redox // J. Sei. Food Agric. 2006. Vol. 86. P. 1996-1998.

Hwang D., Lim Y.H. Resveratrol antibacterial activity against Escherichia coli is mediated by Z-ring formation inhibition via suppression of FtsZ expression// Sei. Rep. 2015. Vol. 5. P. 10029.

Kim H-J. et al. Evalution of antioxidant activity of Vetiver (Vetiveria zizanioides L.) oil and identification of its antioxidant constituents // J. Agric. Food Chem. 2005. Vol. 53. P. 7691-7695.

Marathe S.A. et al. Curcumin reduces the antimicrobial activity of ciprofloxacin against Salmonella typhimurium and Salmonella typhi II J. Antimicrob. Chemother. 2013. Vol. 68. P. 139-152.

Miller J.H. Experiments in molecular genetics. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press. 1972.

Obeidat M. et al. Antimicrobial activity of crude extracts of some plant leaves // Res. J. Microbiol. 2012. Vol. 7. P. 59-67.

Perron N.R., Brumaghim J.L. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding // Cell Biochem. Biophys. 2009. Vol. 53. P. 75-100.

Piddock L.J.V., Wise R. Induction of the SOS response in Escherichia coli by 4-quinolone antimicrobial agents // FEMS Microbiol. Lett. 1987. Vol. 41. P. 289-294.

Rice-Evans C.A. et al. The relative antioxidant activities of plant-derived polyphenols flavonoids // Free Radic. Res. 1995. Vol. 22. P. 375-383.

Samoilova Z. et al. Medicinal plant extracts variously modulate susceptibility of Escherichia coli to different antibiotics // Microb. Res. 2014. Vol. 169. P. 307-317.

Scalbert A. Antimicrobial properties of tannins // Phytochemistry. 1991. Vol. 30. P. 3875-3883.

Shyur L-F. et al. Antioxidant properties of extracts from medicinal plants popularly used in Taiwan // Inter. J. Appl. Sei. Eng. Technol. 2005. Vol. 3. P. 195-202.

Smirnova G. V. et al Influence of polyphenols on Escherichia coli resistance to oxidative stress. // Free Radic. Biol. Med. 2009. Vol. 46. P. 759-768.

Smirnova G. et al. Influence of plant polyphenols and medicinal plant extracts on antibiotic susceptibility of Escherichia coli II J. Appl. Microbiol. 2012. Vol. 113. P. 192-199.

Smith A.H., Lmlay J.A., Mackie R.I. Increasing the oxidative stress response allows Escherichia coli to overcome inhibitory effects of condensed tannins // Appl. Environ. Microbiol. 2003. Vol. 69. P. 3406-3411.

Subramanian M. et al. Resveratrol induced inhibition of Escherichia coli proceeds via membrane oxidation and independent of diffusible reactive oxygen species generation // Redox biology. 2014. Vol. 2. P. 865-872.

Tang S.Y., Halliwell B. Medicinal plants and antioxidants: What do we learn from cell culture and Caenorhabditis elegans studies? // Biochem. Biophys. Res. Commun. 2010. Vol. 394. P. 1-5.

Tao K. et al. Molecular cloning and nucleotide sequencing of oxyR, the positive regulatory gene of a regulon for an adaptive response to oxidative stress in Escherichia coli: homologies between OxyR protein and a family of bacterial activator proteins // Mol. Gen. Genet. 1989. Vol. 218. P. 371-376.

Wu L-C. et al. Antioxidant and antiproliferative activities of red pitaya // Food Chem. 2006. Vol. 95. P. 319-327.

__________________________________________________________

Smirnova G.V., Lepekhina E.V., Muzyka N.G. et al. [Role of thiol redox systems in Escherichia coli response to thermal and antibiotic stresses] Mik-robiologiya. V. 85 (2016): pp. 1-11. (In Russ).

Belenky P., Ye J.D., Porter C.B.M. et al. Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage. Cell Rep. V. 13 (2015): pp. 968-980.

Crozier A., Jaganath I.B., Clifford M.N. Dietary phe-nolics: chemistry, bioavailability and effects on health. Nat. Prod. Rep. V. 26 (2009): pp. 1001-1043.

Cushnie T.P.T., Lamb A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents V. 26 (2005): pp. 343-356.

Drlica K., Malik M., Kerns R.J. et al. Quinolone-mediated bacterial death. Antimicrob. Agents Chemother. V. 52 (2008): pp. 385-392.

Eberhardt M.V., Jeffery E.H. Perspective. When dietary antioxidants perturb the thiol redox. J. Sci. Food Agric. V. 86 (2006): pp. 1996-1998.

Hwang D., Lim Y.H. Resveratrol antibacterial activity against Escherichia coli is mediated by Z-ring formation inhibition via suppression of FtsZ expression. Sci. Rep. V. 5 (2015): pp. 10029.

Kim H-J., Chen F., Wang X. et al. Evalution of antioxidant activity of Vetiver (Vetiveria zizanioides L.) oil and identification of its antioxidant constituents. J. Agric. Food Chem. V. 53. (2005): pp. 7691-7695.

Marathe S.A., Kumar R., Ajitkumar P. et al. Curcumin reduces the antimicrobial activity of ciprofloxacin against Salmonella typhimurium and Salmonella typhi. J. Antimicrob. Chemother. V. 68 (2013): pp. 139-152.

Miller J.H. Experiments in molecular genetics. New York: Cold Spring Harbor Laboratory Press. 1972.

Obeidat M., Shatnawi M., Al dmoor H. et al. Antimicrobial activity of crude extracts of some plant leaves. Res. J. Microbiol. V. 7 (2012): pp. 59-67.

Perron N.R., Brumaghim J.L. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys. V. 53 (2009): pp. 75-100.

Piddock L.J.V., Wise R. Induction of the SOS response in Escherichia coli by 4-quinolone antimicrobial agents. FEMS Microbiol. Lett. V. 41 (1987): pp. 289-294.

Rice-Evans C.A., Miller N.J., Bolwell P.G. et al. The relative antioxidant actuvities of plant-derived polyphenolic flavonoids. Free Radic. Res. V. 22 (1995): pp. 375-383.

Samoilova Z., Smirnova G., Muzyka N. et al. Medicinal plant extracts variously modulate susceptibility of Escherichia coli to different antibiotics. Microb. Res. V. 169 (2014): pp. 307-317.

Scalbert A. Antimicrobial properties of tannins. Phytochemistry. V. 30 (1991): pp. 3875-3883.

Shyur L-F., Tsung J-H., Chen J-H. et al. Antioxidant properties of extracts from medicinal plants popularly used in Taiwan. Lnter. J. Appl. Sci. Eng. Technol. V. 3 (2005): pp. 195-202.

Smirnova G.V., Samoylova Z.Y., Muzyka N.G. et al. Influence of polyphenols on Escherichia coli resistance to oxidative stress. Free Radic. Biol. Med. V. 46 (2009): pp. 759-768.

Smirnova G., Samoilova Z., Muzyka N. et al. Influence of plant polyphenols and medicinal plant extracts on antibiotic susceptibility of Escherichia coli. J. Appl. Microbiol. V. 113 (2012): pp. 192-199.

Smith A.H., Imlay J.A., Mackie R.I. Increasing the oxidative stress response allows Escherichia coli to overcome inhibitory effects of condensed tannins. Appl. Environ. Microbiol. V. 69 (2003): pp. 3406-3411.

Subramanian M., Goswami M., Chakraborty S. Res-veratrol induced inhibition of Escherichia coli proceeds via membrane oxidation and independent of diffusible reactive oxygen species generation. Redox biology. V. 2 (2014): pp. 865-872.

Tang S.Y., Halliwell B. Medicinal plants and antioxidants: What do we learn from cell culture and Caenorhabditis elegans studies? Biochem. Biophys. Res. Commun. V. 394 (2010): pp. 1-5.

Tao K., Makino K., Yonei S. et al. Molecular cloning and nucleotide sequencing of oxyR, the positive regulatory gene of a regulon for an adaptive response to oxidative stress in Escherichia coli: homologies between OxyR protein and a family of bacterial activator proteins. Mol. Gen. Genet. V. 218 (1989): pp. 371-376.

Wu L-C., Hsu H-W., Chen Y-C. et al. Antioxidant and antiproliferative activities of red pitaya. Food Chem. V. 95 (2006): pp. 319-327.

Most read articles by the same author(s)