Biofilms of hydrocarbon-oxidizing bacteria from anthropogenic dis-turbed soils in Kogalym

Main Article Content

Anastasia S. Korobeynikova
Dmitrii M. Golubev
Anna K. Tarasyuk
Olga S. Glinskaya
Denis V. Utkin
Olga V. Nechaeva
Elena V. Glinskaya

Abstract

The article is devoted to the determination of the biological properties and conditions of biofilm formation by hydrocarbon-oxidizing bacteria for their further use in oil pollution treatment and remediation of anthropogenic disturbed soils. The object of the study is hydrocarbon-oxidizing microorganisms isolated from soil samples from Kogalym: Bacillus alcalophilus WS-3027B, B. funiculus LY-2403G, B. halodurans MH-3011N, B. niacini TC-8101S, B. psychrodurans LV-1106E, Curtobacterium flaccumfaciens AE-0851V. Biofilm formation activities were evaluated by the crystal violet staining method for assessing biofilm formation degree in the stationary phase according to O'Toole et al. Among the hydrocarbon-oxidizing microorganisms, B. alcalophilus WS-3027B and C. flaccumfaciens AE-0851V were found to form dense biofilms, while B. halodurans MH-3011N, B. niacini TC-8101S, B. funiculus LY-2403G, and B. psychrodurans LV-1106E exhibited moderate biofilm production. Optimal conditions for the formation of biofilms by the studied microorganisms have been established. The conducted study of biofilm formation of hydrocarbon-oxidizing bacteria opens up prospects for the use of these strains as active destructors of petroleum products in the bioremediation of contaminated soils.

Article Details

How to Cite
Korobeynikova А. С., Golubev Д. М., Tarasyuk А. К., Glinskaya О. С., Utkin Д. В., Nechaeva О. В., & Glinskaya Е. В. (2025). Biofilms of hydrocarbon-oxidizing bacteria from anthropogenic dis-turbed soils in Kogalym. Bulletin of Perm University. Biology, (4), 406–414. https://doi.org/10.17072/1994-9952-2025-4-406-414
Section
Микробиология
Author Biographies

Anastasia S. Korobeynikova, Saratov National Research State University named after N.G. Chernyshevsky, Saratov, Russia

Master's student of the Department of Microbiology and Plant Physiology, Faculty of Biology, N.G. Chernyshevsky SSU

Dmitrii M. Golubev, Saratov National Research State University named after N.G. Chernyshevsky, Saratov, Russia

Master's student of the Department of Microbiology and Plant Physiology, Faculty of Biology, N.G. Chernyshevsky SSU

Anna K. Tarasyuk, Saratov National Research State University named after N.G. Chernyshevsky, Saratov, Russia

Postgraduate student, Laboratory assistant at the Department of Microbiology and Plant Physiology, Faculty of Biology, N.G. Chernyshevsky SSU

Olga S. Glinskaya, Saratov National Research State University named after N.G. Chernyshevsky, Saratov, Russia

Student, Department of Romance and Germanic Philology and Translation Studies, Institute of Philology and Journalism, N.G. Chernyshevsky SSU

Denis V. Utkin, Saratov National Research State University named after N.G. Chernyshevsky, Saratov, Russia

Doctor of Biological Sciences, Professor, Head of the Department of Microbiology and Plant Physiology, Faculty of Biology, N.G. Chernyshevsky SSU

Olga V. Nechaeva, Saratov State Technical University named after Yuri Gagarin, Saratov, Russia

Doctor of Biological Sciences, Associate Professor, Leading Researcher, Laboratory of Molecular Microbiology, Department of Molecular Microbiology and Bioinformatics, Institute of Microbiology, FSBI «National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I.Kulakov» Ministry of Health of the Russian Federation; Professor of the Department of Medical Microbiology named after Academician Z.V. Ermolyeva FSBEI FPE "Russian Medical Academy of Continuous Professional Education" of the Ministry of Healthcare of the Russian Federation

Elena V. Glinskaya, Saratov National Research State University named after N.G. Chernyshevsky, Saratov, Russia

Candidate of Biological Sciences, Associate Professor, Department of Microbiology and Plant Physiology, Faculty of Biology, N.G. Chernyshevsky SSU

References

График температуры грунта за 2022‒2023 годы. Ханты-Мансийский авт. окр. Когалым // Климатический справочник Когалым. URL: https://climate-energy.ru/weather/2017/temp/kogalym_t_grunt_2017.php?ysclid=lsebpl6yar 847311406 (дата обращения: 17.02.2024).

Дистрик-гистосоль // Китайско-русский словарь. URL: https://www.zhonga.ru/chinese-russian/%E9%85%B8%E6%80%A7%E6%9C%89%E6%9C%BA%E5%9C%9F/7r2u2?mobile=false (дата обращения: 17.02.2024).

Клебанович Н.В. Почвы мира в системе WRB: практикум для студентов. Минск, 2015. 41 с.

Лакин Г.Ф. Биометрия. М.: Высшая шк., 1990. 350 с.

Почвы Когалыма // Доморост. URL: https://old.domorost.ru/maps/country/rossiya/region/hanty-mansijskij-avtonomnyj-okrug/district/kogalym/type/soil (дата обращения: 17.02.2024).

Плешакова Е.В. и др. Геохимическая и микробиологическая индикация техногенной трансформа-ции почв города Балаково (Саратовская область) // Трансформация экосистем. 2025. Т. 8, № 3(30). С. 99‒117. DOI: 10.23859/estr-240514. EDN: MWDLQH.

Прикладная экобиотехнология / А.Е. Кузнецов, Н.Б. Градова, С.В. Лушников и др. М.: БИНОМ. Лаборатория знаний, 2012. Т. 1. 638 с.

СО мутности бактерийных взвесей (ОСО 42-28-85 + ОСО 42-28-86) // Лабораторная диагностика. URL: https://www.ld.ru/laboratory/item-663491.html?ysclid=lsq8f5jm44552925345 (дата обращения: 17.02.2024).

Сопрунова О.Б., Нгуен Виет Тьен. Перспективы использования слизеобразующих бактерий в нефтяной отрасли // Юг России: экология, развитие. 2010. Т. 5, № 4. С. 91‒93.

Спирина А.А., Русакова М.В. Влияние параметров окружающей среды на образование биопленок // Материалы XIII Междунар. студ. науч. конф. «Студенческий научный форум». 2021. URL: https://scienceforum.ru/2021/article/2018024230?ysclid=lsqb8w8qdy45047624"> (дата обращения: 17.02.2024).

Урбах В.Ю. Статистический анализ в биологических и медицинских исследованиях. М.: Медици-на, 1975. 297 с.

Adeniji A.O., Okoh O.O., Okoh A.I. Analytical methods for the determination of the distribution of total petroleum hydrocarbons in the water and sediment of aquatic systems: A review // Journal of Chemistry. 2017. Vol. 2017. Art. 13. DOI: 10.1155/2017/5178937.

Ajona M., Vasanthi P. Bio-remediation of crude oil contaminated soil using recombinant native microbi-al strain // Environmental Technology & Innovation. 2021. Vol. 23. Art. 101635. DOI: 10.106/j.eti.2021.101635.

Alkalihalobacillus alcalophilus // BacDive. URL: https://bacdive.dsmz.de/strain/572 (дата обращения: 17.02.2024).

Bacterial Diversity Metadatabase BacDive // BacDive. URL: https://bacdive.dsmz.de (дата обраще-ния: 17.02.2024).

Bala S. et al. Recent strategies for bioremediation of emerging pollutants: a review for a green and sus-tainable environment // Toxics. 2022. Vol. 10, № 8. Art. 484. DOI: 10.3390/toxics10080484.

Curtobacterium flaccumfaciens // BacDive. URL: https://bacdive.dsmz.de/strain/7309 (дата обраще-ния: 17.02.2024).

Gupta A., Thakur I.S. Study of optimization of wastewater contaminant removal along with extracellu-lar polymeric substances (EPS) production by a thermotolerant Bacillus sp. ISTVK1 isolated from heat shocked sewage sludge // Bioresource Technology. 2016. Vol. 213. P. 21‒30. DOI: 10.1016/j.biotech.2016.02.040.

Hegazy G.E. et al. Isolation and characterization of Candida tropicalis B: a promising yeast strain for biodegradation of petroleum oil in marine environments // Microbial Cell Factories. 2024. Vol. 23, № 1. Art. 20. DOI: 10.1186/s12994-023-02292-y.

Hostacká A., Ciznár I., Stefkovicová M. Temperature and pH affect the production of bacterial biofilm // Folia Microbiololy. 2010. Vol. 55. P. 75‒78. DOI: 10.1007/s12223-010-0012-y.

Irwin J.A. Overview of extremophiles and their food and medical applications // Physiological and bio-technological aspects of extremophiles. Academic Press, 2020. P. 65–87. DOI: 10.1016/B978-0-12-818322-9.00006-X.

Luo Q. et al. Bioremediation of diesel oil polluted seawater by a hydrocarbon-degrading bacterial consor-tium with oleophilic nutrients // Regional Studies in Marine Science. 2024. Vol. 71. Art. 103412. DOI: 10.21203/rs.3.rs-2637014/v1.

O'Toole G.A., Kaplan H.B., Kolter R. Biofilm formation as microbial development // Annual Review of Microbiology. 2000. Vol. 54. P. 49‒79. DOI: 10.1146/annurev.micro.54.1.49.

Rosenberg E. Exploiting microbial growth on hydrocarbons – new markets // Trends in Biotechnology. 1993. Vol. 11, № 10. P. 419‒424.

Santos A.L.S. et al. What are the advantages of living in a community? A microbial biofilm perspective! // Memórias do Instituto Oswaldo Cruz. 2018. Vol. 113, № 9. Art. 180212. DOI: 10.1590/0074-02760180212.

Stepanović S., Vuković D., Hola V. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci // APMIS. 2007. Vol. 115. P. 891‒899. DOI: 10/1111/j.1600-0463.2007.apm_630.x.

Tayyeb S.R. et al. Microbial community response to biostimulation and bioaugmentation in crude oil-polluted sediments of the Persian Gulf: A microcosm simulation study // Environmental Research. 2024. Vol. 249. Art. 118197. DOI: 10.106/j.envres.2024.118197.

van Hoogstraten S.W.G. et al. Molecular imaging of bacterial biofilms – a systematic review // Critical Reviews in Microbiology. 2024. P. 971‒992. DOI: 10.1080/1040841X.2023.2223704.

Verma R.K. et al. Role of microbial biofilms in bioremediation: Current perspectives // Microbial Inocu-lants. 2023. P. 253‒276. DOI: 10.1016/B978-0323-99043-100001-3.

Vu K.A., Mulligan C.N. Remediation of oil-contaminated soil using Fe/Cu nanoparticles and biosurfac-tants // Environmental Technology. 2022. Vol. 44, № 22. P. 3446‒3458. DOI: 10.1080/09593330.2022.2061381.

Most read articles by the same author(s)