Effect of the Salinicola socius SMB35T bacteria on the growth of winter rape at low positive temperature

Main Article Content

Lyudmila N. Anan’ina
Elena A. Shestakova
Alena V. Startseva
Alexei Aю Gorbunov

Abstract

This study demonstrates the ability of the Salinicola socius SMB35T strain to synthesize the phytohormone indole-3-acetic acid. Moreover, its production depended on the bacterial growth phase. The effect of inoculation with the auxin-synthesizing bacterium S. socius SMB35T on the growth and cold tolerance of winter rapeseed was studied in vitro. The effect was found to be dose-dependent: the use of 40 mg of bacterial biomass for treating 1 g of seeds significantly reduced the height of shoots, and a trend towards a decrease in root length was noted, while the use of bacteria at a concentration two times lower leveled the negative effect and formed a trend towards an increase in the average root length and shoot height. The effect of bacterial treatment of rapeseed on growth (germination and biomass) under cold stress was studied. Seed inoculation with a growth-promoting concentration of the bacterium resulted in a 13.3% increase in seed germination and a 15.1% increase in seedling biomass under cold conditions. However, the use of the S. socius SMB35T strain did not increase the levels of osmolytes, such as sucrose and proline, in rapeseed seedlings. On the contrary, a significant decrease in sucrose content by 35.5% was observed. These results suggest other mechanisms of bacterial-plant interaction that lead to increased cold tolerance in early plant development. Thus, determining concentration specificity and subsequently studying alternative molecular mechanisms of bacterial-plant interactions are key to development of effective microbial preparations.

Article Details

How to Cite
Anan’ina Л. Н., Shestakova Е. А., Startseva А. В., & Gorbunov А. А. (2025). Effect of the Salinicola socius SMB35T bacteria on the growth of winter rape at low positive temperature. Bulletin of Perm University. Biology, (4), 396–405. https://doi.org/10.17072/1994-9952-2025-4-396-405
Section
Микробиология

References

Березнов А.В., Астарханова Т.С., Шаповал О.А. Регуляторы роста растений повышают продуктив-ность озимого рапса // Защита и карантин растений. 2022. № 10. С. 19‒20. DOI: 10.47528/1026-8634_2022_10_19. EDN: YQGBKB.

Бородько А.А. Влияние различных сроков сева на развитие растений и перезимовку рапса озимого в условиях центральной части Беларуси // Земледелие и селекция в Беларуси. 2020. Т. 56. С. 124‒131. EDN: AUAYJE.

Васильев И.А. и др. Влияние активности микроорганизмов, выделенных из ризосферы Hedysarum zundukii, на рост и развитие растений пшеницы // Известия ВУЗов. Прикладная химия и биотехология. 2025. Т. 15, № 1. С. 17‒23. DOI: 10.21285/achb.958. EDN: WZTRIV.

Горлов С.Л., Бушнев А.С., Асхадуллин Д.Ф. Оптимизация сроков сева озимого рапса в различных зонах // Земледелие. 2009. № 7. С. 34‒35. EDN KXCFCR.

Горьков А.А. Агробиологическое обоснование применения биопрепаратов для озимой пшеницы // Вестник аграрной науки. 2019. № 5. С. 133‒139. DOI: 10.15217/issn2587-666X.2019.5.133. EDN: YIVHXS.

Максимов И. и др. Стимулирующие рост растений бактерии в регуляции устойчивости растений к стрессовым факторам // Физиология растений. 2015. Т. 62. С. 763‒775. DOI: 10.7868/S0015330315060111. EDN: UIMFKT.

Мерзаева О.В., Широких И.Г. Образование ауксинов эндофитными актинобактериями озимой ржи // Прикладная биохимия и микробиология. 2010. Т. 46, № 1. С. 51–57. EDN: KZMAST.

Пилюк Я.Э. Перезимовка и продуктивность озимого рапса в Беларуси и пути их повышения // Зем-леделие и селекция в Беларуси. 2020. № 56. С. 224‒235. EDN: RZMWSX.

Старцева А.В., Акманаев Э.Д., Майсак Г.П. Особенности осеннего развития тритикале озимой при использовании биологических препаратов в условиях среднего Предуралья // Journal of Agriculture and Environment. 2024. № 4. DOI: 10.23649/JAE.2024.44.5. EDN: CMSVUG.

Ториков В.Е. и др. Урожайность масло-семян озимого рапса в зависимости от типа почв и уровня минерального питания // Вестник Брянской государственной сельскохозяйственной академии. 2022. № 6(94). C. 26‒33. DOI: 10.52691/2500-2651-2022-94-6-26-33. EDN: EKKYSE.

Фетюхин И.В., Ахмадов Б.Р., Алиев В.И. Сроки посева озимого рапса в условиях приазовской зо-ны Ростовской области // Аграрная наука и производство в условиях становления цифровой экономики Российской Федерации: материалы Междунар. науч.-практ. конф.: в 3 т. Персиановский, 2023. Т. 1. С. 178‒182. EDN: QMOIXT.

ALKahtani M.D.F. et al. Isolation and characterization of plant growth promoting endophytic bacteria from desert plants and their application bioinoculants for sustainable agriculture // Agronomy. 2020. Vol. 10. Art. 1325. DOI: 10.3390/agronomy10091325. EDN: GKRTDS.

Barka A.E., Nowk J., Clement C. Enhancement of chilling resistance of inoculated grapevine plantlets with plant growth promoting rhizobacteria Burkholderia phytofermans strain PsJN // Applied and Environmen-tal Microbiology. 2006. Vol. 72. P. 7246–7252.

dos Santos R.M. et al. Inoculum concentration and mineral fertilization: effects on the endophytic mi-crobiome of soybean // Frontiers in Microbiology. 2022. Vol. 7, № 13. Art. 900980. DOI: 10.3389/fmicb.2022.900980.

Fidalgo C. et al. The endosphere of the salt marsh plant Halimione portulacoides is a diversity hotspot for the genus Salinicola: description of five novel species Salinicola halimionae sp. nov., Salinicola aestuarinus sp. nov., Salinicola endophyticus sp. nov., Salinicola halophyticus sp. nov., Salinicola lusitanus sp. nov. // International Journal of Systematic and Evolutionary Microbiology. 2019. Vol. 69, № 1. P. 46‒62. DOI: 10.1099/ijsem.0.003061. EDN: UVAKWY.

Glick B.R., Penrose D.M., Jiping L. A model for the lowering plant ethylene concentrations by plant growth promoting bacteria // Journal of Theoretical Biology. 1998. Vol. 190. P. 63–68.

Glickmann E., Dessaux Y. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria // Applied and Environmental Microbiology. 1995. Vol. 61, № 2. P. 793‒796. DOI: 10.1128/aem.61.2.793-796.1995.

Hayat S. et al. Role of proline under changing environments: a review // Plant Signaling and Behavior. 2012. Vol. 7, № 11. P. 1456‒1466. DOI: 10.4161/psb.21949.

Jankovska-Bortkevič E. et al. Response of winter ˙ oilseed rape to imitated temperature fluctuations in autumn-winter period // Environmental and Experimental Botany. 2019. Vol. 166. Art. 103801. DOI: 10.1016/j.envexpbot.2019.103801.

Jankovska-Bortkevič E. et al. Effects of auxin-type plant growth regulators and cold stress on the endog-enous polyamines in pea plants // Horticulturae. 2023. Vol. 9, № 2. Art. 244. DOI: 10.3390/horticulturae9020244.

Jankauskienė J. et al. The application of auxin-like compounds promotes cold acclimation in the oilseed rape plant // Life. 2022. Vol. 12, № 8. Art. 1283. DOI: 10.3390/life12081283.

Lavania M. et al. Induction of plant defense enzymes and phenolics by treatment with plant growth-promoting rhizobacteria Serratia marcescens NBRI1213 // Current Microbiology. 2006. Vol. 52. P. 363–368. DOI: 10.1007/s00284-005-5578-2.

Lavanya P.J., Deepika D.S., Sridevi M. Screening and isolation of plant growth promoting, halotolerant endophytic bacteria from mangrove plant Avicennia officinalis L. at coastal region of corangi andhra // Agri-cultural Science Digest. 2023. Vol. 43, № 1. P. 51‒56. DOI: 10.18805/ag.D-5607.

Lei Y. et al. Physiological and molecular responses to cold stress in rapeseed (Brassica napus L.) // Jour-nal of Integrative Agriculture. 2019. Vol. 18, № 12. P. 2742–2752.

Li Q. et al. A plant growth-promoting bacteria Priestia megaterium JR48 induces plant resistance to the crucifer black rot via a salicylic acid-dependent signaling pathway // Frontiers in Plant Science. 2022. Vol. 10, № 13. Art. 1046181. DOI: 10.3389/fpls.2022.1046181.

Mishra P.K. et al. Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psy-chrotolerant Pseudomonads from NW Himalayas // Archives of Microbiology. 2011. Vol. 193, № 7. P. 497‒513. DOI: 10.1007/s00203-011-0693-x.

Moieni-Korbekandi Z., Karimzadeh G., Sharifi M. Cold-induced changes of proline, malondialdehyde and chlorophyll in spring canola cultivars // Journal of Plant Physiology and Breeding. 2014. Vol. 4, № 1. P. 1‒11.

Musazade E., Mrisho I.I., Fen X. Auxin metabolism and signaling: integrating independent mechanisms and crosstalk in plant abiotic stress responses // Plant Stress. 2025. Vol. 18. DOI: 10.1016/j.stress.2025.101034.

Nagata S., Adachi K., Sano H. NMR analyses of compatible solutes in a halotolerant Brevibacterium sp. // Microbiology. 1996. Vol. 142. P. 3355–3362.

Plotnikova E.G. et al. Salinicola // Bergey's Manual of Systematics of Archaea and Bacteria, 2020.

Plotnikova E.G. et al. Thalassospira permensis sp. nov., a new terrestrial halotolerant bacterium isolated from a naphthalene-utilizing microbial consortium // Mikrobiologiia. 2011. Vol. 80. P. 691–699. EDN: OFAEFV.

Singh N. et al. Biological control of Macrophomina phaseolina by chemotactic fluorescent Pseudomonas aeruginosa PN1 and its plant growth promontory activity in chir-pine // Crop Protection. 2010. Vol. 29, № 10. P. 1142‒1147.

Tao X. et al. Understanding of exogenous auxin in regulating sucrose metabolism during postharvest to-mato fruit ripening // Postharvest Biology and Technology. 2022. Vol. 189. Art. 111913. DOI: 10.1016/j.postharvbio.2022.111913.

Zhu J. et al. Low temperature inhibits root growth by reducing auxin accumulation via ARR1/12 // Plant and Cell Physiology. 2015. Vol. 56, № 4. P. 727‒736. DOI: 10.1093/pcp/pcu217.