Phylogenetic diversity of nitrile-utilizing bacteria of soda sludge storage facility and some of their physiological and biochemical fea-tures

Main Article Content

Galina A. Syrovatskaya
Aleksandr Yu. Maksimov
Yuliya G. Maksimova

Abstract

The phylogenetic diversity of nitrile-utilizing bacteria from a soda sludge storage facility was studied. Haloalkalitolerant bacteria were isolated on acetamide and acetonitrile as the only carbon sources and identified by 16S rDNA sequencing. The isolates were found to belong to the phyla Actinomycetota (Arthrobacter, Microbacterium, Rhodococcus spp.) and Pseudomonadota (Acinetobacter, Ensifer, Pseudomonas, Rhizobium spp.). The isolates were found to have nitrile hydratase and amidase activity and contain genes for two types of amidases and Fe-containing nitrile hydratase. No nitrilase activity or nitrilase genes, Co-containing nitrile hydratases, or enantioselective amidases were found. Isolates are capable of forming biofilms, and biofilm biomass increases with decreasing growth temperature.

Article Details

How to Cite
Syrovatskaya Г. А., Maksimov А. Ю. ., & Maksimova Ю. Г. . (2025). Phylogenetic diversity of nitrile-utilizing bacteria of soda sludge storage facility and some of their physiological and biochemical fea-tures. Bulletin of Perm University. Biology, (3), 279–288. https://doi.org/10.17072/1994-9952-2025-3-279-288
Section
Микробиология
Author Biographies

Galina A. Syrovatskaya, Institute of Ecology and Genetics of Microorganisms, Ural Branch RAS, Perm, Russia

postgraduate student

Aleksandr Yu. Maksimov, Institute of Ecology and Genetics of Microorganisms, Ural Branch RAS, Perm, Russia

Ph.D. in Biology, Associate Professor, Senior Research Fellow

Yuliya G. Maksimova, Institute of Ecology and Genetics of Microorganisms, Ural Branch RAS, Perm, Russia

doctor of biology, Associate Professor, head of the laboratory

References

Демаков В.А. и др. ПЦР-анализ генов ферментов гидролиза нитрилов карбоновых кислот // Вестник Пермского университета. 2009а. № 10 (36). С. 73–78. EDN: PAVDQJ.

Демаков В.А. и др. Почвенные актинобактерии рода Rhodococcus, обладающие высокой амидазной активностью // Вестник Пермского университета. 2009б. № 10 (36). С. 79–83. EDN: PAVDQT.

Павлова Ю.А., Неустроева А.Н., Максимов А.Ю. Сравнительный анализ последовательностей ге-нов амидаз почвенных актинобактерий рода Rhodococcus // Известия Самарского научного центра Рос-сийской академии наук. 2011. Т. 13, № 5-3. С. 272–276. EDN: PFLHQP.

Шилова А.В., Максимов А.Ю., Максимова Ю.Г. Выделение и идентификация алкалотолерантных бактерий с гидролитической активностью из содового шламохранилища // Микробиология. 2021. Т. 90, № 2. С. 155–165. DOI: 10.31857/s0026365621020130. EDN: KLWPKV.

Шилова А.В., Максимов А.Ю., Максимова Ю.Г. Изменения микробиома как индикатор восстанов-ления природных сред содового шламохранилища АО «Березниковский содовый завод» // Вода и эколо-гия: проблемы и решения. 2020. № 1 (81). С. 84–94. DOI: 10.23968/2305-3488.2020.25.1.84-94. EDN: MXZOXG.

Chmura A. et al. Utilization of arylaliphatic nitriles by haloalkaliphilic Halomonas nitrilicus sp. nov. iso-lated from soda soils // Applied Microbial and Cell Physiology. 2008. Vol. 81. P. 371–378. DOI: 10.1007/s00253-008-1685-x. EDN: LKZBGV.

Debabov V.G., Yanenko A.S. Biocatalytic hydrolysis of nitriles // Review Journal of Chemistry. 2011. Vol. 1, № 4. P. 376–394. DOI: 10.1134/S2079978011030010. EDN: OFRMQP.

Egelkamp R. et al. Impact of nitriles on bacterial communities // Frontiers in Environmental Science. 2019. Vol. 7. Art. 103. DOI: 10.3389/fenvs.2019.00103.

Maksimova Yu., Eliseeva A., Maksimov A. Metabolic and morphological aspects of adaptation of al-kaliphilic Bacillus aequororis 5-DB and alkali-tolerant Bacillus subtilis ATCC 6633 to changes in pH and min-eralization // International Journal of Microbiology. 2024. Vol. 2024, № 1. Art. 3087296. DOI: 10.1155/2024/3087296.

Maksimova Yu.G., Syrovatskaya G.A., Maksimov A.Yu. Nitrile-hydrolyzing haloalkalitolerant rhodo-cocci of soda sludge storage // Indian Journal of Microbiology. 2025. DOI: 10.1007/s12088-024-01445-w. EDN: PPKSHZ.

Rustler S. et al. Characterisation of the substrate specificity of the nitrile hydrolyzing system of the aci-dotolerant black yeast Exophiala oligosperma R1 // Studies in Mycology. 2008. Vol. 61, № 1. P. 165–174. DOI: 10.3114/sim.2008.61.17.

Serra I. et al. Marine microorganisms for biocatalysis: selective hydrolysis of nitriles with a salt-resistant strain of Meyerozyma guilliermondii // Marine Biotechnology. 2019. Vol. 21. P. 229–239. DOI: 10.1007/s10126-019-09875-0.

Singh P. et al. Enhanced production of Nhase of alkali stable Rhodococcus pyridinivorans Nit 36 and its application in acrylamide production // IJBPAS. 2017. Vol. 6, № 2. P. 278–299.

Sorokin D.Y. et al. Acetonitrile degradation under haloalkaline conditions by Natronocella acetinitrilica gen. nov., sp. nov. // Microbiology. 2007a. Vol. 153. P. 1157–1164. DOI: 10.1099/mic.0.2006/004150-0. EDN: MKICDJ.

Sorokin D.Y. et al. Microbial isobutyronitrile utilization under haloalkaline conditions // Applied and En-vironmental Microbiology. 2007b. Vol. 73, № 17. P. 5574–5579. DOI: 10.1128/AEM.00342-07. EDN: KGVDZB.

Sorokin D.Y., Van Pelt S., Tourova T.P. Utilization of aliphatic nitriles under haloalkaline conditions by Bacillus alkalinitrilicus sp. nov. isolated from soda solonchak soil // FEMS Microbiology Letters. 2008. Vol. 288, № 2. P. 235–240. DOI: 10.1111/j.1574-6968.2008.01353.x. EDN: LLIXUV.