Evaluation of the state of gene pools of Pinus sylvestris L. populations in the Urals and adjacent territories using two types of molecular markers

Main Article Content

Nikita V. Chertov

Abstract

The state of gene pools of 11 populations of Scots pine (Pinus sylvestris L.) in the Urals and adjacent territories was studied using two types of highly polymorphic molecular markers. Analysis of polymorphism of inter simple sequence repeats markers showed an average level of genetic diversity of the species (P95 = 1.000; I = 0.224; HE = 0.130; ne= 1.319). Analysis of polymorphism of nucleotide sequences of three potentially adaptive loci of P. sylvestris revealed haplotype diversity (Hd) equal to 0.662, and nucleotide diversity (π) was 0.004. Tajima test showed the presence of deviations from neutrality for the Pinus-12 locus (DT = -2.615), which indicates the possible influence of selective processes. The population from Cherdynsky (Ps_Ch) district has the highest genetic diversity (P95 = 0.970; I = 0.264; HE = 0.167; Hd = 0.661), and the population from Mechetlinsky (Ps_Mh) district has the lowest (P95 = 0.853; I = 0.144; HE = 0.089; Hd = 0.650). Populations with typical (CGO <1.000) and specific (CGO >1.000) gene pools were identified. It was found that the state of the gene pools of 7 studied populations of P. sylvestris is satisfactory, and depletion of the gene pools is observed in 4 populations. The presented approach allows us to identify the key features of their gene pools, which are necessary for the development of measures to preserve and restore the genetic resources of Scots pine.

Article Details

How to Cite
Chertov Н. В. (2025). Evaluation of the state of gene pools of Pinus sylvestris L. populations in the Urals and adjacent territories using two types of molecular markers. Bulletin of Perm University. Biology, (1), 80–88. https://doi.org/10.17072/1994-9952-2025-1-80-88
Section
Генетика
Author Biography

Nikita V. Chertov , Perm State University, Perm, Russia

Assistant at the Department of Botany and Plant Genetics

References

Боронникова С.В. Молекулярно-генетический анализ и оценка состояния генофондов ресурсных видов растений Пермского края. Пермь, 2013. 223 с

Животовский Л.А. Показатель внутрипопуляционного разнообразия // Журнал общей биологии. 1980. Т. 41, № 6. С. 828–836.

Кузнецова Н.Ф., Клушевская Е.С., Аминева Е.Ю. Высокопродуктивные сосновые леса в условиях изменяющегося климата // Известия вузов. Лесной журнал. 2021. № 6. С. 9–23. DOI: 10.37482/0536-1036-2021-6-9-23. EDN: HSOSAO.

Потокина Е.К., Александрова Т.Г. Методы классификации внутривидового разнообразия по ре-зультатам молекулярного маркирования // Фундаментальные и прикладные проблемы ботаники в нача-ле XXI века: материалы Всерос. конф. Петрозаводск, 2008. Ч. 3. С. 62–65. EDN: VPHMNL.

Путенихин В.П. Фенотипическая структура популяций дуба черешчатого в Башкирском Предура-лье как основа сохранения генофонда вида в регионе // Известия Самарского научного центра РАН. 2013. Т. 15, № 3 (4). С. 1410–1412. EDN: SAENVX.

Рябухина М.В. и др. Генетическое разнообразие популяций сосны обыкновенной Pinus sylvestris L. // Теорeтическая и прикладная экология. 2019. № 3. С. 66–71.

Сбоева Я.В. Оценка состояния генофондов популяций Pinus sylvestris L. на востоке и северо-востоке Восточно-Европейской равнины // Вестник Пермского университета. Сер. Биология. 2023. Вып. 4. С. 375‒384. DOI: 10.17072/1994-9952-2023-4-375-384. EDN: LPTCZY.

Чертов Н.В. Анализ генетического разнообразия, структуры и дифференциации популяций Pinus sylvestris L. на Урале // Вестник Пермского университета. Сер. Биология. 2024. Вып. 2. С. 221–230. DOI: 10.17072/1994-9952-2024-2-221-230. EDN: RYUKIL.

Allen C.D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risk for forest // For. Ecol. Manag. 2010. Vol. 259. P. 660–684. DOI: 10.1016/j.foreco.2009.09.001. EDN: MXNALP.

Chertov N. et al. Polymorphic Loci of Adaptively Significant Genes Selection for Determining Nucleotide Polymorphism of Pinus sylvestris L. Populations in the Urals // Genes. 2024. Vol. 15, № 10. Art. 1343. DOI: 10.3390/genes15101343. EDN: BEZUTD.

Eriksson G. Evolutionary forces influencing variation among populations of Pinus sylvestris // Silva Fennica. 1998. Vol. 32. Art. 694. DOI: 10.14214/sf.694.

Floran V. et al. Organelle genetic diversity and phylogeography of Scots pine (Pinus sylvestris L.) // Not. Bot. Horti Agrobot. 2011. Vol. 39. P. 317–322. DOI: 10.15835/nbha3916103.

Gauthier S. et al. Boreal forest health and global change // Science. 2015. Vol. 349. P. 819–822. DOI: 10.1126/science.aaa9092. EDN: VEKJNR.

González-Martínez S.C., Krutovsky K.V., Neale D.B. Forest-tree population genomics andadaptive evo-lution // New Phytologist. 2006. Vol. 170. P. 227–238. DOI: 10.1111/j.1469-8137.2006.01686.x. EDN: UWXEPH.

Kavaliauskas D., Danusevičius D., Baliuckas V. New insight into genetic structure and diversity of Scots pine (Pinus sylvestris L.) populations in Lithuania based on nuclear, chloroplast and mitochondrial DNA mark-ers // Forests. 2022. Vol. 13. Art. 1179. DOI: 10.3390/f13081179. EDN: BPHWTL.

Khanova E. et al. Genetic and selection assessment of the Scots pine (Pinus sylvestris L.) in forest seed orchards // Wood Res. 2020. Vol. 65.P. 283–292. DOI: 10.37763/wr.1336-4561/65.2.283292. EDN: KKIYMC.

Librado P., Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data // Bioinformatics. 2009. № 25. P. 1451–1452. DOI: 10.1093/bioinformatics/btp187.

Mirov N.T. The genus Pinus // The Ronald Press Company. New York: Ronald Press Company, 1967. 602 p.

Namkoong G. Forest genetics: pattern and complexity // Canadian Journal of Forest Research. 2001. Vol. 31. P. 623–632. DOI: 10.1139/x00-166.

Nei M. Analysis of gene diversity in subdivided populations // Proc. Nat. Acad. Sci. USA. 1973. Vol. 70. P. 3321–3323. DOI: 10.1073/pnas.70.12.3321.

Nei M. Molecular Evolutionary Genetics. New York: Columbia University Press, 1987. 615 p.

Peakall R., Smouse P.E. GenAlEx6: Genetic analysis in Excel. Population genetic software for teaching and research // Mol. Ecol. Not. 2006. Vol. 6. P. 288–295. DOI: 10.1111/j.1471-8286.2005.01155.x.

Rogers S.O., Bendich A.J. Extraction of DNA from milligram amounts of fresh, herbarium and mummi-fied plant tissues // Plant molecular biology. 1985. Vol. 5, № 2. P. 69–76. DOI: 10.1007/bf00020088. EDN: TTDGLG.

Wachowiak W. et al. High genetic similarity between Polish and North European Scots pine (Pi-nus sylvestris L.) populations at nuclear gene loci // Springer Link. 2014. Vol. 10. P. 1015–1025. DOI: 10.1007/s11295-014-0739-8. EDN: CHNNQF.

Wachowiak W. et al. Genetic perspective on forest management of Scots pine (Pinus sylvestris L.) in pro-tected areas // Forest Ecology and Management. 2024. Vol. 568. Art. 122127. DOI: 10.1016/j.foreco.2024.122127. EDN: SOWKQY.

Yeh F.C., Yang R.C., Boyle T. POPGENE, the Microsoft Windows-based user-friendly software for popu-lation genetic analysis of co-dominant and dominant markers and quantitative traits // Department of Renewa-ble Resources, Univ. of Alberta, Edmonton. Alta, 1999. 238p.

Zietkiewicz E., Rafalski A., Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification // Genomics. 1994. Vol. 20, № 2. P. 176–183. DOI: 10.1006/geno.1994.1151.