Растения травяно-кустарничкового яруса сосняков зеленомошной и травяной групп типов леса ООПТ «Осинская лесная дача» как источник летучих органических соединений

##plugins.themes.bootstrap3.article.main##

Виктория Леонидовна Спирина
Полина Юрьевна Сарапульцева
Андрей Аркальевич Зайцев
Лариса Викторовна Новоселова
Валерий Алексеевич Исидоров

Аннотация

С целью определения компонентов летучих выделений растений травяно-кустарничкового яруса, входящих в общее количество летучих органических соединений (ЛОС) пограничного слоя атмосферы, установлен качественный состав ЛОС девяти видов растений (Ledum palustre L., Arctostaphylos uva-ursi (L.) Spreng, Vaccinium myrtillus L., Oxycoccus palustris Pers., Rubus saxatilis L., Chimaphila umbellatа (L.) W. Barton, Aegorodium podagraria L., Asarum europaeum L., Lycopodium complanatum L.), собранных на особо охраняемой природной территории «Осинская лесная дача». По результатам химического анализа идентифицировано более 100 различных органических соединений девяти классов. Установлено, что основной вклад в эмиссию приходится на долю терпенов, которые обладают высокой реакционной способностью и могут принимать участие в процессах радикального газофазного окисления. Проведен сравнительный анализ ЛОС, выделяемых Vaccinium myrtillus L., Chimaphila umbellatа (L.) W. Barton и Asarum europaeum L., собранных на одной и той же территории в разные годы. Отмечено существенное различие в составах монотерпенов и сесквитерпенов, выделяемых этими группами растений.

##plugins.themes.bootstrap3.article.details##

Как цитировать
Спирина, В. Л., Сарапульцева, П. Ю., Зайцев, А. А., Новоселова, Л. В., & Исидоров, В. А. (2025). Растения травяно-кустарничкового яруса сосняков зеленомошной и травяной групп типов леса ООПТ «Осинская лесная дача» как источник летучих органических соединений. Вестник Пермского университета. Серия Биология, (4), 369–382. https://doi.org/10.17072/1994-9952-2025-4-369-382
Раздел
Ботаника
Биографии авторов

Виктория Леонидовна Спирина, Пермский государственный национальный исследовательский университет, Пермь, Россия

Аспирант кафедры ботаники и генетики растений, ассистент кафедры аналитической химии и экспертизы

Полина Юрьевна Сарапульцева, Пермский государственный национальный исследовательский университет, Пермь, Россия

Ассистент кафедры аналитической химии и экспертихы

Андрей Аркальевич Зайцев, Пермский государственный национальный исследовательский университет, Пермь, Россия

Декан географического факультета

Лариса Викторовна Новоселова, Пермский государственный национальный исследовательский университет, Пермь, Россия

Д.б.н, профессор, кафедра ботаники и генетики растений

Валерий Алексеевич Исидоров, Белостокский технический университет, Белосток, Польша

Д.х.н, профессор

Библиографические ссылки

Андреев Д.Н. Экогеохимическая диагностика антропогенной трансформации особо охраняемых природных территорий: дис. … канд. геогр. наук. Пермь, 2012. 164 с.

Белан Б.Д. Проблема тропосферного озона и некоторые результаты его измерений // Оптика атмо-сферы и океана. 1996. Т. 9, № 9. С. 1184–1213.

Бузмаков С.А., Гатина Е.Л. Зонирование особо охраняемой природной территории «Осинская лес-ная дача» // Географический вестник. 2009. № 1. С. 51–55.

Другов Ю.С., Родин А.А. Газохроматографический анализ загрязненного воздуха: практическое руководство. М.: Лаборатория знаний, 2020. 530 с.

Зябченко С.С. Сосновые леса европейского Севера. Л.: Наука, 1984. 248 с. EDN: TMRHBX.

Иллюстрированный определитель растений Пермского края / С.А., Овеснов, Е.Г. Ефимик, Т.В. Козьминых и др.; под ред. С.А. Овеснова. Пермь: Кн. мир, 2007. 743 с.

Исидоров В.А. Летучие выделения растений: cостав, скорость эмиссии и экологическая роль // СПб.: Алга, 1994. 188 с.

Особо охраняемые природные территории Пермского края / под ред. С.А. Бузмакова. Пермь: Астер, 2017. 516 с. EDN: UUQCCO.

Прянишников Д.Н. Популярная агрохимия. М.: Наука, 1965. 398 с.

Рысин Л.П. Сосновые леса Европейской части СССР. М.: Наука, 1975. 213 с. EDN: VZHYPN.

Таблицы и модели хода роста и продуктивности насаждений основных лесообразующих пород Северной Евразии (нормативно-справочные материалы). Изд. второе, доп. М., 2008. 887 с.

Aaltonen H. et al. Boreal pine forest floor biogenic volatile organic compound emissions peak in early summer and autumn // Agricul. Forest Meteorol. 2011. Vol. 151. P. 682–691. DOI: 10.1016/j.agrformet.2010.12.010. EDN: YHHIHW.

Aaltonen H. et al. Continuous VOC flux measurements on boreal forest floor // Plant Soil. 2013. Vol. 369. P. 241–256. DOI: 10.1007/s11104-012-1553-4. EDN: LOIIAO.

Atkinson R. Atmospheric chemistry of VOCs and NOx // Atmospheric environment. 2000. Vol. 34, №. 12–14. P. 2063–2101. EDN: AETVOV.

Atkinson R., Arey J. Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review // Atmospheric Environment. 2003. Vol. 37. P. 197–219. DOI: 10.1016/S1352-2310(03)00391-1. EDN: ER-SYLN.

Di Carlo P. et al. Missing OH reactivity in a forest: Evidence for unknown reactive biogenic VOCs // Sci-ence. 2004. Vol. 304, № 5671. P. 722–725.

Filella I. et al. Volatile organic compounds emissions in Norway spruce (Picea abies) in response to tem-perature changes // Physiologia Plantarum. 2007. Vol. 130, № 1. P. 58–66.

Glasius M., Goldstein A.H. Recent discoveries and future challenges in atmospheric organic chemistry // Environ. Sci. Technol., 2016. Vol. 50, № 6. P. 2754–2764. DOI: 10.1021/acs.est.5b05105. EDN: WVGQZT.

Grabmer W. et al. VOC emissions from Norway spruce (Picea abies L.[Karst]) twigs in the field—results of a dynamic enclosure study // Atmospheric Environment. 2006. Vol. 40. P. 128–137.

Gray C.M., Monson R.K., Fierer N. Emission of volatile organic compounds during the decomposition of plant litter // J. Geophys. Res. 2010. Vol. 115. Art. G03015. DOI: 10.1029/2010JG001291. EDN: NBOAMR.

Guenther A. et al. A global model of natural volatile organic compounds emission // J. Geophys. Res. 1995. Vol. 100. P. 8873– 8892.

Hakola H. et al. Emissions of volatile organic compounds from Norway spruce and potential atmospher-ic impacts // Frontiers in Forests and Global Change. 2023. Vol. 6. Art. 1116414. DOI: 10.3389/ffgc.2023.1116414. EDN: CBJRYL.

Heald C.L. et al. A simplified description of the evolution of organic aerosol composition in the atmos-phere // Geophysical Research Letters, 2010. Vol. 37, № 8. Art. L08803.

Hester R.E., Harrison R.M. (eds.). Volatile organic compounds in the atmosphere // Royal Society of Chemistry. 1995. Vol. 4. Art. 140.

Isebrands J.D. et al. Volatile organic compound emission rates from mixed deciduous and coniferous forests in Northern Wisconsin, USA // Atmos. Environ. 1999. Vol. 33. P. 2527–2536. DOI: 10.1016/S1352-2310(98)00250-7. EDN: ACTBVL.

Isidorov V.A. Non-methane hydrocarbons in the atmosphere of boreal forests: composition, emission rates, estimation of regional emission and photocatalytic transformation // Ecol. Bull. 1992. Vol. 42. P. 71–76.

Isidorov V., Jdanova M. Volatile organic compounds from leaves litter // Chemosphere, 2002. Vol. 48. P. 975–979. DOI: 10.1016/S0045-6535(02)00074-7. EDN: YKIWED.

Isidorov V.A. et al. Emission of volatile organic compounds by plants on the floor of boreal and mid-latitude forests // Journal of Atmospheric Chemistry, 2022. Vol. 79. P. 153–166. DOI: 10.1007/s10874-022-09434-3. EDN: CJOSZN.

Isidorov V.A. et al. Chemical composition of volatile and extractive compounds of pine and spruce leaf litter in the initial stages of decomposition // Biogeosciences. 2010. Vol. 7. P. 2785–2794. DOI: 10.5194/bg-7-2785-2010. EDN: MURVGM.

Isidorov V.A., Vinogorova V.T., Rafałowski K. HS–SPME analysis of volatile organic compounds of co-niferous needle litter // Atmos. Environ. 2003. Vol. 37. P. 4645–4650. DOI: 10.1016/j.atmosenv.2003.07.005. EDN: XRWEZM.

Isidorov V., Vinogorova V., Rafałowski K. Gas chromatographic determination of extractable com-pounds composition and emission rate of volatile terpenes from larch needle litter // J. Atmos. Chem. 2003. Vol. 50. P. 263–278.

Isidorov V.A., Zaitsev A.A. Reviews and syntheses: VOC emissions from soil cover in boreal and tem-perate natural ecosystems of the Northern Hemisphere // Biogeosciences Discussions, 2022. Vol. 19. P. 4715-4746. DOI: 10.5194/bg-19-4715-2022. EDN: ORZJNM.

Isidorov V.A., Zenkevich I.G., Ioffe B.V. Volatile organic compounds in the atmosphere of forest // At-mos. Environ. 1985. Vol. 19. P. 1–8. DOI: 10.1016/0004-6981(85)90131-3. EDN: XLOFMF.

Komenda M. et al. Comparability of biogenic VOC emission rate measurements under laboratory and ambient conditions at the example of monoterpene emissions from Scots pine (Pinus sylvestris) //Journal of atmospheric chemistry. 2003. Vol. 45. № 1. P. 1–23. EDN: EQPBFL.

Komenda M., Koppmann R. Monoterpene emissions from Scots pine (Pinus sylvestris): field studies of emission rate variabilities // Journal of Geophysical Research: Atmospheres. 2002. Vol. 107. № D13. Art. ACH 1-1-ACH 1-13.

Kourtchev I. et al. Enhanced volatile organic compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols // Sci. Rep. 2016. Vol. 6. Art. 35038.

Makkonen R. et al. BVOC-aerosol climate interactions in the global aerosol-climate model ECHAM5.5-HAM2 // Atmos. Chem. Phys. 2012. Vol. 12. P. 10077–10096. DOI: 10.5194/acp-12-10077-2012.

Mogensen D. et al. Simulations of atmospheric OH, O3 and NO3 reactivities within and above the boreal forest // Atmospheric Chemistry and Physics. 2015. Vol. 15, № 7. P. 3909–3932. DOI: 10.5194/acp-15-3909-2015. EDN: VGPYAD.

Shao M. et al. Volatile organic compound emissions from Scots pine: mechanisms and description by al-gorithms // Journal of Geophysical Research: Atmospheres. 2001. Vol. 106. № D17. P. 20483–20491.

Stocker T.F. et al. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change // Climate change. 2013. Vol. 5. P. 1–1552.

Tarvainen V. et al. Temperature and light dependence of the VOC emissions of Scots pine // Atmospher-ic Chemistry and Physics. 2005. Vol. 5, № 4. P. 989–998.

van Meeningen Y. et al. Isoprenoid emission variation of Norway spruce across a European latitudinal transect // Atmos. Environ. 2017. Vol. 170. P. 45–57.

Yang Y. et al. Towards a quantitative understanding of total OH reactivity: A review // Atmospheric En-vironment. 2016. Vol. 134. P. 147–161.

Zhou P. et al. Simulating ozone dry deposition at a boreal forest with a multi-layer canopy deposition model // Atmospheric Chemistry and Physics. 2017. Vol. 17, № 2. P. 1361–1379. DOI: 10.5194/acp-17-1361-2017. EDN: YXJQBB.