A Pontryagin Maximum Principle Analogue in the Optimal Control Problem of a Differential Equations System with a Fractional Caputo Derivative and a Multipoint Quality Criterion

Authors

DOI:

https://doi.org/10.17072/1993-0550-2022-3-5-10

Keywords:

admissible control, fractional order derivative, adjoint system, maximum principle, optimality condition, multipoint functional

Abstract

The processes optimal control problem described by a ordinary differential equations system with fractional order is considered. The quality criterion is a multipoint nonlinear functional. A quality functional increment formula is constructed by introducing a conjugate system in thefractional integral equation form such as Volterra. The necessary optimality condition is proved in the Pontryagin maximum principle analogue form by the constructed formula investigating with using the McShane needle variation.

References

Понтрягин Л. С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. М.: Наука, 1961. 384 с.

Габасов Р., Кириллова Ф.М. Принцип максимума в теории оптимального управления. Минск: Наука и техника, 1974. 272 с.

Васильев Ф.П. Методы оптимизации. М.: Факториал, 2002. 812 с.

Габасов Р.Ф., Кириллова Ф.М. Особые оптимальные управления. М.: Либроком, 2011. 272 с.

Постнов С.С. Исследование задач оптимального управления динамическими системами дробного порядка методом моментов: автореф. дис. … канд. физ.-мат. наук. М., 2015. 26 c.

Bahaa G.M. Fractional optimal control problem for differential system with delay argument // Advances in Difference Equations. 2017. (1).

Lin S.Y. Generalized Gronwall inequalities and their applications to fractional differential equations // Journal of Inequalities and Applications, 2013. 549. № 1.

Published

2022-09-29

How to Cite

Mansimov К. Б. о., & Ahmedova Ж. Б. к. (2022). A Pontryagin Maximum Principle Analogue in the Optimal Control Problem of a Differential Equations System with a Fractional Caputo Derivative and a Multipoint Quality Criterion. BULLETIN OF PERM UNIVERSITY. MATHEMATICS. MECHANICS. COMPUTER SCIENCE, (3 (58), 5–10. https://doi.org/10.17072/1993-0550-2022-3-5-10