An analogue of the linearized maximum principle for the optimal control problem for nonlinear difference equations of fractional order

Authors

  • S. T. Alieva Baku State University
  • Kamil Mansimov Institute of control system of the National academy of sciences of Azerbaijan

DOI:

https://doi.org/10.17072/1993-0550-2021-1-9-15

Keywords:

admissible control, optimal control, fractional difference equation, fractional operator, linearized maximum principle;, fractional sum, method of functional increments.

Abstract

Problem of optimal control of an object, described by a system of nonlinear difference equations of fractional order, is considered. Applying one version of the method of increments, a discrete analogue of the linearized maximum principle is established.

References

Miller K., Ross B. An introduction to the fractional calculus and fractional differential equations. New York: Wiley, 1993. 366 p.

M.Feckan,J.Wang,M.Pospisil. Fractional-order equations and inclusions. Vol. 3. 2010. 384 p.

Podlubny I. Fractional differential equations. San Diego: Acad. Press, 1999. 340 p.

Нахушев A.M. О непрерывных дифференциальных уравнениях и их разностных аналогах // ДАН СССР. 1988. Т. 300, № 4. С. 729–732.

Нахушев A.M. Дробное исчисление и его применение. М.: Физматлит, 2003. 272 с.

Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, вектор функциThe Netherlands, 2006.

J.Jagan Mohan, G.V.Deekshitulu. Fractional order difference equations. International journal of differential equations. Vol. 2012. Article ID 780619. P. 1–11.

Nuno R.O. Bastos, Rui A.C. Ferreria, Delfim F.M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete and Continuous Dynamical Systems-Series B (DCDS-B). 2010. P. 21.

Розоноэр Л.И. Принцип максимума Л.С. Понтрягина в теории оптимальных систем. I, Автоматика и телемеханика. 1959. Т. 20, вып. 10. C. 1320–1334.

Габасов Р., Кириллова Ф.М. Оптимизация линейных систем. Минск: Изд-во БГУ, 1973. 256 с.

Samko S.G., Kilbas A.A., Marichev O.I. Integrals and Derivatives of Fractional Order and Some of their Applications, Nauka I Tekhnika, Minsk, Belarus, 1987.

Christopher Goodric, Allan C.Piterson. Discrete fractional calculus.Department of Mathematic University of Nebraska–Lincoln Lincoln, NE, USA. 2015.

Габасов Р., Кириллова Ф.М, Альсевич В.В. Методы оптимизации. Минск: Изд-во ʺЧетыре четвертиʺ, 2011. 472 с

Мансимов К.Б. Дискретные системы. Баку: Изд-во Бакинского гос. ун-та, 2002. 114 с.

Учайкин В.В. Методы дробных производных // Известия вузов. ПНД. 2019. Т. 27, вып. 1. С. 5–40.

Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника, 1987.

T. Kaczorek. Reachability of positive 2D fractional linear systems. Physica Scripta, 2009.

Sajewski Ł. Positive realization of SISO 2D different orders fractional discrete-time linear systems. Acta Mec

Published

2021-12-13

How to Cite

Alieva С. Т., & Mansimov К. Б. о. (2021). An analogue of the linearized maximum principle for the optimal control problem for nonlinear difference equations of fractional order. BULLETIN OF PERM UNIVERSITY. MATHEMATICS. MECHANICS. COMPUTER SCIENCE, (1(52), 9–15. https://doi.org/10.17072/1993-0550-2021-1-9-15