Specific interface area in a system of two immiscible liquids experiencing intense direct contact boiling
DOI:
https://doi.org/10.17072/1994-3598-2017-3-5-15Abstract
In this paper we present an approach to theoretical estimation of the mean interface area in the unit volume (δS/δV), which is significant for a system of two well-stirred immiscible liquids experiencing interfacial boiling. The estimation is based on the balance of mechanical energy transformations and the laws of momentum- and heat-transfer within the turbulent boundary layer. Specifically, we assume that the rising bubbles of generated vapour perform stirring of the fluid and serve as a source of the energy of macroscopic mechanical motion. In statistically quasi-steady state, the potential energy of the bubble buoyancy generated per the unit time converts into the kinetic energy of flow, which, in turn, is dissipated due to viscosity per the same time. Description of the viscose dissipation and heat transfer towards the interface is based on the theory of turbulent boundary layer. The theory allows to derive the relations between the specific contact area of two liquids and the other macroscopic characteristics describing the state of the system. In particular, this makes it possible to derive equations for the cooling dynamics of the system in the absence of an external heat influx. On the basis of this approach, one can construct a self-contained mathematical description of the process of interfacial boiling. In this paper, the volume fractions of the two components are assumed to be similar, as well as the values of their kinematic viscosity and molecular thermal diffusivity.References
Krell E. Handbook of Laboratory Distillation. 2nd ed. Elsevier, 1982.
Geankoplis C. J. Transport Processes and Separation Process Principles. 4th ed. Prentice Hall, 2003.
Simpson H. C., Beggs G. C., Nazir M. Evaporation of butane drops in brine. Desalination, 1974, vol. 15, p. 11.
Celata G. P., Cumo M., D’Annibale F., Gugliermetti F., Ingui’ G. Direct contact evaporation of nearly saturated R 114 in water. International Journal of Heat and Mass Transfer, 1995, vol. 38, p. 1495.
Roesle M. L., Kulacki F. A. An experimental study of boiling in dilute emulsions, part A: heat transfer. International Journal of Heat and Mass Transfer, 2012, vol. 55, p. 2160.
Roesle M. L., Kulacki F. A. An experimental study of boiling in dilute emulsions, part B: visualization. International Journal of Heat and Mass Transfer, 2012, vol. 55, p. 2166.
Sideman S., Isenberg J. Direct Contact Heat Transfer with Change of Phase: Bubble Growth in Three-Phase Systems. Desalination, 1967, vol. 2, p. 207.
Kendoush A. A. Theory of convective drop evapo-ration in direct contact with an immiscible liquid. Desalination, 2004, vol. 169, p. 33.
Filipczak G., Troniewski L., Witczak S. Pool Boiling of Liquid-Liquid Multiphase Systems. In: Ahsan A. (Ed.) Evaporation, Condensation and Heat transfer. InTech, 2011, p. 123.
Gordon K. F., Singh T., Weissman E. Y. Boiling heat transfer between immiscible liquids. Interna-tional Journal of Heat and Mass Transfer, 1961, vol. 3, p. 90.
Prakash C. B., Pinder K. L. Direct contact heat transfer between two immiscible liquids during vaporisation. Canadian Journal of Chemical Engineering, 1967, vol. 45, p. 210.
Prakash C. B., Pinder K. L. Direct contact heat transfer between two immiscible liquids during vaporization: Part II: Total evaporation time. Canadian Journal of Chemical Engineering, 1967, vol. 45, p. 215.
Pimenova A. V., Goldobin D. S. Boiling at the Boundary of Two Immiscible Liquids below the Bulk Boiling Temperature of Each Component. Journal of Experimental and Theoretical Physics, 2014, vol. 119, no. 1, p. 91.
Pimenova A. V., Goldobin D. S. Boiling of the interface between two immiscible liquids below the bulk boiling temperatures of both components. European Physical Journal E, 2014, vol. 37, p. 108.
Pimenova A. V., Goldobin D. S. Gravitational instability of thin gas layer between two thick liquid layers. Journal of Applied Mechanics and Technical Physics, 2016, vol. 57, no. 7, p. 32.
von Karman Th. Mechanische Ähnlichkeit und Turbulenz. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Fachgruppe 1 (Mathematik), 1930, vol. 5, pp. 58–76.
Prandtl L. Neuere Ergebnisse der Turbulenzforschung. Zeitschrift des Vereines Deutscher Ingenieure, 1933, vol. 77, pp. 105–114.
Landau L. D., Lifshitz E. M. Fluid Mechanics. Oxford: Butterworth-Heinemann, 1987.
Schlichting H., Gersten K. Boundary-Layer Theory. Springer, 2000.
Downloads
Published
How to Cite
Issue
Section
License
Автор предоставляет Издателю журнала (Пермский государственный национальный исследовательский университет) право на использование его статьи в составе журнала, а также на включение текста аннотации, полного текста статьи и информации об авторах в систему «Российский индекс научного цитирования» (РИНЦ).
Автор даёт своё согласие на обработку персональных данных.
Право использования журнала в целом в соответствии с п. 7 ст. 1260 ГК РФ принадлежит Издателю журнала и действует бессрочно на территории Российской Федерации и за её пределами.
Авторское вознаграждение за предоставление автором Издателю указанных выше прав не выплачивается.
Автор включённой в журнал статьи сохраняет исключительное право на неё независимо от права Издателя на использование журнала в целом.
Направление автором статьи в журнал означает его согласие на использование статьи Издателем на указанных выше условиях, на включение статьи в систему РИНЦ, и свидетельствует, что он осведомлён об условиях её использования. В качестве такого согласия рассматривается также направляемая в редакцию справка об авторе, в том числе по электронной почте.
Редакция размещает полный текст статьи на сайте Пермского государственного национального исследовательского университета: http://www.psu.ru и в системе OJS на сайте http://press.psu.ru
Плата за публикацию рукописей не взимается. Гонорар за публикации не выплачивается. Авторский экземпляр высылается автору по указанному им адресу.